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ABSTRACT

Semiperiodic signals possess an underlying periodicity, but their constituent spec-

tral components include stochastic elements which make it impossible to analyti-

cally determine locations of the signal’s critical points. Mathematically, a signal’s

critical points are those at which it is not differentiable or where its derivative is

zero. In some domains they represent characteristic points, which are locations

indicating important changes in the underlying process reflected by the signal.

For many applications in healthcare, knowledge of precise locations of these

points provides key insight for analytic, diagnostic, and therapeutic purposes. For

example, given an appropriate signal they might indicate the start or end of a

breath, numerous electrophysiological states of the heart during the cardiac cycle,

or the point in a stride at which the heel impacts the ground. The inherent vari-

ability of these signals, the presence of noise, and often, very low signal amplitudes,

makes accurate estimation of these points challenging.

There has been much effort in automatically estimating characteristic point

locations. Approaches include algorithms operating in the time domain, on vari-

ous transformations of the data, and using different models of the signal. These

methods apply a wide variety of techniques ranging from simple thresholds and

search windows to sophisticated signal processing and pattern recognition algo-

rithms. Existing approaches do not explicitly use prior knowledge of characteristic

point locations in their estimation.
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This dissertation first develops a framework for an efficient parametric represen-

tation of semiperiodic signals using splines. It then implements an instance of that

framework to optimally estimate locations of characteristic points, incorporating

prior knowledge from manual annotations on training data. Splines represent sig-

nals in a piecewise manner by applying an interpolant to constraint points on the

signal known as knots. The framework allows choice of interpolant, objective func-

tion, knot initialization algorithm, and optimization algorithm. After initialization

it iteratively modifies knot locations until the objective function is met.

For optimal estimation of characteristic points the framework relies on a Bayesian

objective function, the a posteriori probability of knot locations given the observed

signal. This objective function fuses prior knowledge, the observed signal, and its

spline estimate. With a linear interpolant, knot locations after optimization serve

as estimates of the signal’s characteristic points.

This implementation was used to determine locations of 11 characteristic points

on a prospective test set comprising 200 electrocardiograph (ECG) signals from

20 subjects. It achieved a mean error of -0.4 milliseconds, less than one quarter of

a sample interval. A low bias is not sufficient, however, and the literature recog-

nizes error variance to be the more important factor in assessing accuracy. Error

variances are typically compared to the variance of manual annotations provided

by reviewers. The algorithm was within two standard deviations for six of the

characteristic points, and within one sample interval of this criterion for another

four points.

The spline framework described here provides a complementary option to exist-

ing methods for parametric modeling of semiperiodic signals, and can be tailored to

represent semiperiodic signals with high fidelity or to optimally estimate locations

of their characteristic points.
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Chapter 1

INTRODUCTION

1.1 OVERVIEW

This dissertation addresses the problem of optimally identifying characteristic

points in semiperiodic signals. Semiperiodic signals are essentially periodic in

nature, but without meeting the strict definition of periodicity due to temporal

variations of their harmonics. Like periodic signals, semiperiodic signals demon-

strate a repeating pattern creating a distinct and recognizable morphology in each

cycle, but semiperiodic morphologies exhibit slow variations (relative to the fun-

damental frequency of the signal) in the times and amplitudes of their features.

The signal’s characteristic points are locations of visual prominence that impart

important information regarding the underlying process reflected in the signal, and

can be viewed as the morphological features defining each cycle. They are modeled

as locations of high curvature or local extrema and are consistent with the notion

of mathematical critical points. Identifying such points is important in efficiently

representing the signal, delineating it into regions of interest, or in identifying and

tracking key morphological markers.

An example used in developing the algorithms, and detailed in subsequent sec-

tions, is that of the electrocardiogram signal. The ECG signal is semiperiodic in

nature and has numerous clinically-relevant morphological points in each cycle.
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These characteristic points directly reflect cardiac activity and are used by clini-

cians to determine a subject’s health state. Unpredictable changes in the subject’s

physiology, as well as various types of noise that are invariably present in the signal,

make optimally locating characteristic points a challenging problem.

The novel algorithmic framework described in this dissertation addresses these

challenges using a time-domain representation of semiperiodic signals to deter-

mine locations of characteristic points for each cycle. The framework describes

semiperiodic signals using splines, which represent signals in a piecewise manner

by applying an interpolant to constraint points on the signal known as knots.

To optimally locate the signal’s characteristic points they are modeled as knots

in a spline representation, and their best locations are determined using Bayesian

estimation. A training set annotated by human experts provides the required

prior distribution, and is used in conjunction with a likelihood derived from the

original signal and its the spline representation to compute a figure of merit, the

a posteriori probability (or simply, posterior) of knot locations given the observed

signal. Finding the knot locations that maximize the figure of merit provides an

optimal estimate of the signal’s characteristic points.

Adopting a Bayesian approach to locate characteristic points provides a mea-

sure of noise tolerance as well as improved performance in the presence of ambigu-

ous or varying characteristic points. Here the term “noise” refers generically to

signal distortion as may be caused by the data acquisition system (for example,

quantization), interference from man-made signals similar to that of interest (such

as other electronic equipment), or inescapable additive noise from natural sources.

Ambiguous characteristic points occur when morphological features are not clearly

defined or when they vary in the data under analysis. In such cases, the algorithm

relies more heavily on the priors for its estimate of knot locations, helping reduce

variability of characteristic point estimates and thereby improve their accuracy.

Although any type of learning algorithm requiring training data can be said
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to determine priors in some sense, the differentiating factor in this effort is its

explicit use of probability density estimates describing characteristic point times

and amplitudes. Capturing the priors in this manner enables employing Bayesian

estimation in this domain.

Depending on the requirements of a system using this algorithm, the prior in-

formation can be determined using annotated data from a single subject or from

multiple subjects, or perhaps through other means such as a model of the un-

derlying process. In the case of priors derived using data of a single subject, the

priors can be considered to be tuned, or biased, to that particular subject. This

gives the optimization algorithm a greater ability to handle noise and ambiguity

for that subject’s characteristic point locations. However, its ability to generalize

to morphologies that are significantly different will be limited. In the case of priors

derived from data of multiple subjects, the priors will be more general and capable

of representing a wider range of morphologies, but will have reduced ability to

tolerate noise or ambiguity.

The algorithm described here can be used in any setting where accurate esti-

mates of characteristic point locations are required. Examples for the ECG signal

include offline processing of long-term ECG recordings to assess subjects’ health

state, in real time transport monitoring, or on wearable devices to determine sub-

jects’ stress levels “in-the-moment”, and drive therapeutic interventions. It could

also be used in diagnostic systems to identify characteristic point locations that are

then used to derive specific, established metrics used by clinicians for diagnostic

or prognostic purposes.

Comparing the performance of the algorithm described here against existing

commercial diagnostic systems is problematic. Although such systems provide

metrics derived from characteristic point locations, they do not provide the loca-

tions themselves. These algorithms are typically proprietary, and obtaining ac-

cess to their internal state will require special licensing arrangements with the



www.manaraa.com

4

manufacturer. In addition, most do not estimate the locations of all eleven char-

acteristic points as described in this effort. Furthermore, interpretive algorithms

implemented by commercial diagnostic systems typically operate on multiple leads

(usually up to 12, although some systems use 13). This allows multiple “views”

of the ECG signal and can aid in reading through noise before performing anal-

ysis. In short, performing a consistent, objective comparison is non-trivial as the

fundamental approaches and assumptions are very different.

1.2 BACKGROUND INFORMATION

1.2.1 Periodic and semiperiodic signals

Periodic signals

Before introducing semiperiodic signals, a formal definition of periodic signals is

required. From [15], a signal f(t) is periodic with period T0 if for any integer m

f(t ± mT0) = f(t), for −∞ < t < ∞ (1.1)

That is, function values separated by any integer multiple of the period are identical

for the signal. Periodic signals can be expressed in the frequency domain as an

infinite summation of sinusoids using the Fourier series expansion. The Fourier

series expansion, in exponential form, is defined as

f(t) =
∞
∑

n=−∞

c(nf0)e
j2πnf0t (1.2)

Where f0 = 1/T0 and the nth Fourier coefficient, c(nf0) is given by

c(nf0) =
1

T0

∫

T0

f(t)e−j2πnf0tdt (1.3)

From the definition of the Fourier expansion in Equation (1.2), it is seen that a

periodic signal contains only frequency components that are exact integer multiples

of the fundamental frequency, nf0. These components are called the harmonics of
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the signal, and each has an amplitude and phase determined by the corresponding

Fourier coefficient c(nf0).

Letting cr(nf0) = Re[c(nf0)] and ci(nf0) = Im[c(nf0)] represent the real and

imaginary components of the Fourier coefficient, respectively, the amplitude and

phase of the nth harmonic are given by

|c(nf0)| =

√

cr(nf0)
2 + ci(nf0)

2 (1.4)

∠c(nf0) = arctan
ci(nf0)

cr(nf0)
(1.5)

Note that for truly periodic signals, none of the these values is time varying;

the frequency, amplitude, and phase are constant for the fundamental and all

harmonics.

To illustrate fundamental concepts regarding characteristic points of periodic

and semiperiodic signals, a simplified example signal can be useful. One example

that is analytically simple, yet powerful enough to roughly approximate certain

real-world signals like the ECG, is a rectangular pulse train. Analysis of this

waveform will demonstrate tradeoffs between frequency- and time-domain repre-

sentations of semiperiodic signals.

First define a single rectangular pulse of width τ over the interval of length T0.

With −T0/2 ≤ t ≤ T0/2, the pulse is represented by f(t) as

f(t) =







A, |t| < τ
2

0, |t| > τ
2

(1.6)

This pulse has “on” value of A for a total duration of τ in each period of duration

T0. Infinitely replicating this pulse every T0 seconds results in a pulse train with

duty cycle of τ/T0, i.e., the the ratio of time it is “on” to the total period. It can

be shown (see, for example [15]) that the Fourier coefficients of this pulse train are

given by

c(nf0) = Af0τ sinc(nf0τ) (1.7)
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Where

sinc(λ) ,
sin(πλ)

πλ
(1.8)

Figure 1.1 shows the Fourier series representation of a rectangular pulse train

with τ = T0/5 (20% duty cycle) for several cases that approximate the signal

with an increasing number of harmonics. As the order of the Fourier expansion is

increased the resulting synthesized signal more closely resembles the original pulse

train. The ability of a frequency-based approach is limited in representing highly

time-localized changes such as rapid slopes and sharp peaks. In these cases a large

number of coefficients are required for accurate representation.

0 1 2 3

0

0.5

1

Time

(a) Two Fourier coefficients

0 1 2 3

0

0.5

1

Time

(b) Five Fourier coefficients

0 1 2 3

0

0.5

1

Time

(c) Ten Fourier coefficients

0 1 2 3

0

0.5

1

Time

(d) 100 Fourier coefficients

Figure 1.1: A comparison of Fourier series syntheses of a rectangular pulse train with a 20% duty

cycle. Each subfigure shows the pulse train reconstructed with a different number of coefficients,

illustrating that abrupt edges require a greater number of coefficients for accurate reproduction.
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For certain semiperiodic signals such as the ECG, accurately representing mor-

phological features of the signal with this approach rapidly becomes intractable

due to the number of coefficients required. This is especially true since the “duty

cycle” of an ECG signal is even less than this example, typically around 10% for

an adult. Additionally, for most domains the Fourier coefficients c(nf0) have no

relevance to experts like clinicians analyzing ECG signals; they will have to be

translated into domain-specific annotations to be meaningful to users.

Semiperiodic signals

Qualitatively, semiperiodic signals are similar to periodic signals in that they have a

repetitive structure. However, for a semiperiodic signal the fundamental frequency

and the amplitudes, frequencies, and phases of the harmonics are all time varying.

By definition these variations are bandlimited and change at a rate much lower

than the fundamental frequency resulting in morphologies that are similar to each

other on a cycle-to-cycle basis, but not identical as would be the case for a truly

periodic signal. These differences are manifested as changes in the timing and

amplitude of the signal’s characteristic points.

There are numerous examples of semiperiodic signals, many of which occur in

biological systems. In addition to the electrocardiogram signal which is used in this

dissertation, other semiperiodic signals in this domain include hemodynamic wave-

forms such as those created by blood pressure or pulse sensors; the photoplethys-

mogram, which can be used to determine blood oxygenation levels by measuring

the blood’s absorption of different frequencies of light; the electroglottogram, which

measures the degree of contact in vocal folds during voiced speech using changes in

impedance; respiration signals derived from resistive bands, impedance measure-

ments, or other means; and the neuronal spikes which reflect action potentials of

neurons in the brain.

Semiperiodic signals also occur in biomechanics, where electromyographic or
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on-body inertial sensors are often used to monitor activity. Their use in quantifying

gait, for example, results in semiperiodic signals reflecting step-to-step interval and

points of interest corresponding to heel strike, terminal stance, toe off, and foot

swing during each step. In other domains, sources of semiperiodic signals include

tides, vibration of rotating machines such as motors, and photometric monitoring

of stars.

Since semiperiodic signals are not truly periodic, the term rhythmicity is some-

times used in referring to the cyclical pattern of the signal. The time-varying com-

ponents that are summed to synthesize a semiperiodic signal are called partials to

differentiate them from the harmonics that compose a purely periodic signal.

In [10], a sequence xk is semiperiodic with rhythm r, if for each ǫ > 0 there

exists a positive integer n such that

|xk − xk+rn| < ǫ, ∀r, k (1.9)

Following this example, Equation (1.1) is modified to reflect the changes required

for a semiperiodic signal

|f(t) − f(t ± mT1(t))| < ǫ, ∀m (1.10)

In Equation (1.10), T1(t) is the time-varying fundamental period of the semiperi-

odic signal. The effect of variations in the partials’ amplitudes, frequencies, and

phase values is captured by the inequality; specifically, these variations will result

in small changes to the signal’s amplitude from cycle to cycle.

To illustrate these concepts, Figure 1.2 shows the periodic rectangular pulse

train with 20% duty cycle which was introduced in Figure 1.1. Superimposed on

the pulse train are two synthesized waveforms. The first, in red, was generated

using the first three Fourier coefficients as defined by Equation (1.7). In this

case none of the parameters are time-varying: the fundamental frequency is fixed,

harmonic frequencies are exact integer multiples of the fundamental frequency and
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the amplitudes and phase values of the harmonics are static. The result is a truly

periodic signal.

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
−0.2

0

0.2

0.4

0.6

0.8

1

Time

Figure 1.2: Rectangular pulse train with periodic and simulated semiperiodic representations.

The red synthesized waveform is purely periodic, and the blue synthesized waveform simulates

semiperiodicity with a slowly varying random component in the Fourier coefficients used in its

synthesis. Both waveforms are represented using the first three Fourier coefficients.

The second waveform, in blue, was also generated with three components. How-

ever, this case uses partials (not harmonics) by introducing a slowly varying ran-

dom component to the fundamental frequency and the frequencies, amplitudes,

and phase values of the Fourier coefficients derived above. The resulting wave-

form demonstrates key characteristics of a semiperiodic signal. Note how the main

peak of the semiperiodic signal shifts off of the red, corresponding to the change

in its fundamental frequency. And changes in the amplitudes, frequencies, and

phase values of the partials result in changes in the amplitudes and timing of the

lobes around each main peak. This sets the stage for the description of a signal’s

characteristic points.
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1.2.2 Characteristic points

Informally, the characteristic points of a semiperiodic signal are points of inter-

est which garner attention due to their prominence. In the literature they are

commonly known as fiducial points, and to a lesser extent, as signal singularities.

Regardless of the term, it is well understood that these locations “...often carry

the most important information” in such waveforms [48].

Characteristic points are typically a local minimum, a local maximum, or a

point of high curvature. Their prominence reflects a change that is of interest

in the underlying system. Since the characteristic point represents a change of

interest, it is reasonable, then, that it can be described with respect to the signal’s

derivatives. In this work characteristic points are modeled as a subset of the

signal’s critical points, i.e., locations at which the slope is zero or undefined. All

characteristic points are critical points, but the converse is not true: some critical

points may not be of interest for a given domain, so they would not be classified

as characteristic points.

The first derivative test, described in any introductory calculus text such as

[80], is used to analytically determine local minima and maxima of a waveform.

First, define the critical points of a signal f(t) as those at which its derivative

f ′(t) = 0 or does not exist, i.e., a discontinuity. Then for all critical points c, if

there exists an interval (c − δ, c + δ) such that

f ′(t) < 0, t ∈ (c − δ, c) and (1.11)

f ′(t) > 0, t ∈ (c, c + δ) (1.12)

then f(c) is a local minimum. Reversing the inequalities above will determine if

the critical point c is a local maximum.

Points of inflection are points at which a waveform exhibits a change of concav-

ity as evidenced by a change in the sign of its second derivative f ′′(t). The sense of

concavity is defined to be “concave up” when f ′′(t) > 0 and “concave down” when
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f ′′(t) < 0. Again following [80], a point c is a point of inflection for a function f(t)

if its graph is concave in one sense for t ∈ (c − δ, c) and concave in the opposite

sense for t ∈ (c, c + δ). At the point of inflection, the function’s second derivative

f ′′(t) = 0 or is undefined.

For a purely periodic signal, the locations of local extrema and points of in-

flection can be determined analytically by solving the equations above; there is no

ambiguity in their placement. This can be seen in the red waveform in Figure 1.2,

in which the locations of all local extrema and points of inflection are static with

respect to each other.

For a semiperiodic signal with a stochastic element in its time-varying partials,

the critical points can be determined numerically by calculating estimates of the

signal’s first and second derivatives from its samples, then using these values with

the equations above to locate local extrema and points of inflection. In the noise-

free case of the blue waveform in Figure 1.2, the location of critical points is slightly

different for each cycle, but given the signal samples, the locations of the critical

points can be determined numerically.

The most interesting case — leading to one of the contributions of this disserta-

tion, occurs for a semiperiodic signal with stochastically-varying partials as above,

but with the challenge of additive noise. In this case neither of the approaches

above will work. Due to the stochastic element of the partials there is no analytic

solution describing the critical points. And they cannot be determined numerically

as the additive noise will cause many locations not at critical points where the first

or second derivatives are zero. As a result, in this case the characteristic points

must be determined individually for each cycle.

Once obtained, the characteristic points of semiperiodic signals can be used

to delineate the signal and identify important points of interest in the underlying

system. The points of interest can be used to represent the signal in an efficient
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manner and facilitate analysis, signal classification, or data compression. In addi-

tion, they may have domain relevance in and of themselves. For example, for ECG

signals, characteristic points reflect changes in electrophysiological activity in the

myocardium and are subjects of extensive clinical training in electrophysiology and

cardiology. Both absolute and relative changes to these points, as well as metrics

derived from their locations, can aid clinicians in analyzing and diagnosing the

condition of the heart.

1.2.3 Splines

Splines were originally long, thin, flexible strips of wood or metal that were bent

around fixed points in order to create smooth curves for engineering purposes like

shipbuilding [69]. They have since been adapted to mathematical curve fitting

and are used to approximate signals in a piecewise-continuous manner. They have

numerous applications ranging from data smoothing, regression, and curve fitting

to computer graphics and geometric modeling.

Splines can provide compact and efficient representations of certain classes of

signals. In this dissertation they are used as the basis for algorithms that can op-

timally represent semiperiodic signals and optimally determine their characteristic

points. The spline’s flexibility in approximating curves with different degrees of

smoothness at different locations [21] is ideal for representing semiperiodic signals

as described above. This is especially true when the cyclical components of the sig-

nal’s partials result in many critical points localized in a short time period during

each cycle.

This type of signal could be modeled as a “low duty cycle” semiperiodic signal

which — like the ECG — exhibits short durations of low smoothness between long

durations of high smoothness. Attempting to fit this pattern with a polynomial

will require one of very high order, making it susceptible to severe oscillations of

the fitted curve [47] and potential overfitting.
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Splines address this problem by providing an alternative that allows represen-

tation of a signal piecewise with polynomials of lower degree, including degree one,

i.e., linear segments. The segments are bounded on each side by points called

knots, selected along the abscissa of the function to be estimated. The knots

are used as the endpoints for an interpolant function. The knots themselves may

be points of discontinuity or, depending on the implementation, additional con-

straints such as twice differentiability (for cubic splines) may be required of the

interpolation.

In the development of this work it was found that polynomial splines could more

accurately represent ECG waveforms, but that linear splines are more effective in

determining locations of their characteristic points. This is discussed further in

Chapters 3 and 4.

1.2.4 Electrocardiogram

This section presents a very high-level background on the electrocardiogram sig-

nal, sufficient to inform its use in developing the spline framework and Bayesian

characteristic point optimization algorithms.

A heart beat involves a complex electrochemical process during which an or-

dered movement of ions into and out of myocardial cells causes them to depolarize

and repolarize, resulting in the coordinated contraction of the heart muscle to

pump blood.

Electrical depolarization refers to the movement of ions in myocardial cells

causing them to contract. The electric field associated with depolarization forms an

activation front that is rapidly spread to neighboring cells, thus quickly propagating

depolarization across the entire heart muscle. Repolarization consists of the ionic

transfers that prepare the cell for its next contraction.

The movement of charged particles, whether for depolarization or repolariza-

tion, creates an electrical current between myocardial cells. The current is localized
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to myocardial cells, but the corresponding electrical potential induces an electrical

field that extends to the body surface. Potential differences of the electrical field

can be measured on the skin or sampled and recorded as a function of time with

an electrocardiograph. Such a representation is known as the surface electrocar-

diogram. An ECG signal captured in this manner is a projection of the summation

of the electrical activity of all myocardial cells at a given instant onto the surface

of the body.

ECG measurement requires at least two electrodes to capture the potential

difference caused by the electric field on the body. The location of these electrodes

specifies a lead, and the physical placement of a lead on the body determines the

“view” of the heart that it provides.

Figure 1.3 illustrates a human heart and provides a high-level view of its elec-

trical system [104]. A normal heart beat starts with the depolarization of the

sino-atrial node located at the posterior region of the top of the right atrium.

The sino-atrial node is the heart’s natural pacemaker; its specialized cells sponta-

neously depolarize at a rate determined by nervous system activity and hormones

in the blood. The propagation of the activation front from the sino-atrial node into

the atria (the top chambers of the heart) causes their depolarization resulting in

contraction, pumping de-oxygenated blood into the right ventricle and oxygenated

blood into the left ventricle.

The activation front continues moving down the heart muscle, where it encoun-

ters the atrio-ventricular node near the top of the right ventricle. This node relays

electrical activity into the ventricles via the bundle of His and the Purkinje fibers,

causing them to depolarize. The resulting contraction of the right ventricle pumps

deoxygenated blood to the lungs, and that of the left ventricle pumps oxygenated

blood to the body via the aorta.

Figure 1.4 shows an example of a cardiac cycle, comprising two beats. The first

beat is annotated with labels indicating the most common constituent waves of the



www.manaraa.com

15

Figure 1.3: The heart and its electrical conduction system. A normally-conducted heart beat

starts with an impulse in the SA node, causing the atria to contract and fill the ventricles with

blood. The electrical activation then moves to the ventricles through the AV node, causing them

to contract and pump oxygenated blood to the body and de-oxygenated blood to the lungs.

Figure from P.J. Wang and N.A.M. Estes III, Supraventricular Tachycardia, Circulation, 106(25)

pages e206–e208, 2002.

ECG signal. The second beat is used to illustrate intra- and inter-beat measures

commonly used to analyze and diagnose ECG signals. All of these measures are

defined by characteristic points of the signal, i.e., the onsets, peaks, and offsets of

component waves.

In Figure 1.4, the P wave corresponds to depolarization of the atria. The

large size of the ventricles, combined with their rapid depolarization creates what

is generally the most prominent feature of the ECG signal: the QRS complex,
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which is composed of the Q, R, S, and sometimes R′ waves as indicated in the

figure. The T wave reflects changes caused by repolarization of the ventricles. The

repolarization of the atria cannot be seen on the ECG as their amplitude is too

small to be detected by surface electrodes [9].

The isoelectric level is the electrical baseline of the heart, and occurs when

there are no changes due to depolarization or repolarization. It is used for certain

relative measurements such as amplitudes of component waves and deviation of

the ST segment.

Figure 1.4: An annotated ECG illustrating a cardiac cycle. The first beat is annotated with

names and locations of component waves. Characteristic points are generally the onsets, peaks,

and offsets of these waves. Other measures, such as the intervals and segments shown above, are

used by clinicians to quantify electrophysiological activity of the heart and can indicate disease,

stress, and other conditions of interest.

The derived measures called intervals refer to time differences between various

characteristic points in the signal, while those called segments refer to the value of



www.manaraa.com

17

the signal itself across the specified range.

The time between successive beats is often called the RR interval and desig-

nates the time between two depolarizations of the ventricles. The RR interval

specifies the fundamental period (rhythm) of the ECG and determines the sub-

ject’s instantaneous heart rate. For virtually all subjects (the exceptions being a

few extremely pathological conditions), the RR interval varies on a beat-to-beat

basis. This change by itself is sufficient to make the ECG signal semiperiodic; it is

exacerbated by periodic and stochastic changes to partials resulting in measurable

changes to all characteristic points from cycle to cycle.

The semiperiodic nature of the ECG waveform manifests not only as beat-

to-beat changes in RR interval, but also as changes in amplitude and timing of

all constituent characteristic points including the starting and ending points of

the P, QRS, and T waves, and the location and magnitude of their peaks. So

the morphology of the ECG complex repeats regularly — but with periodic and

stochastic variations — and as such cannot be classified as a truly periodic signal.

Locating and quantifying characteristic points in the ECG waveform and ob-

taining metrics derived from them provides a non-invasive view of cardiac function

for analytic, diagnostic, or therapeutic purposes. There are many such metrics;

a few commonly-used ones include the QT interval, deviation of the ST segment

from the isoelectric level, the PR interval, and variability in RR interval over time.

However, the semiperiodic nature of the ECG signal combined with noise from mus-

cle artifact, electrode motion, and other sources makes accurate location of these

points challenging. It is for this reason that ECG signal analysis was selected as

the first implementation of the spline framework for parametric representation of

semiperiodic signals, and for optimal characteristic point determination.
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1.3 CONTRIBUTIONS

This section summarizes the main contributions of the dissertation: a novel frame-

work for spline-based representation of semiperiodic signals, an implementation

of that framework for optimally locating characteristic points of a semiperiodic

signal using Bayesian estimation, the probability density estimate used to incorpo-

rate a priori information regarding characteristic points for the optimization, and

a method for objectively obtaining this prior knowledge.

1.3.1 Spline framework for representing semiperiodic signals

The first contribution of this dissertation is the development of a novel, generic,

spline-based framework for parametrically representing semiperiodic signals. As

an application, an instance of this framework is developed to address the ECG

delineation problem, also known as ECG segmentation. The result of delineation

on a cardiac cycle is the representation of the signal in a compact, efficient manner

comprising a number of knots whose positions are optimally determined by the

algorithm. The output of the algorithm can be used to classify heart beats based

on their morphology, compress the ECG signal, or with additional processing, to

identify and estimate characteristic point locations.

The framework is shown in Figure 1.5 and comprises a method for knot ini-

tialization, a choice of spline interpolant, an objective function (error criterion or

figure of merit), and a knot location optimization algorithm. Upon completion

of the knot adjustment cycle, indicated by the shaded region in the figure, the

objective function is satisfied and knots are placed at their optimal locations.

Choice of the components implemented by the framework is driven by the ap-

plication. For example, high-fidelity signal representation requires different choices

than accurate estimation of characteristic point locations.
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Figure 1.5: The spline framework for representing semiperiodic signals.

For the initial application demonstrating ECG waveform delineation, the frame-

work is used to segment the signal into arbitrary regions for an accurate represen-

tation of the signal. Examining the results establishes tradeoffs in the approach

that balance computational complexity, reconstructed signal fidelity, and location

of resultant knots with respect to true characteristic points.

The spline representation is an efficient one, requiring relatively few knots to

represent each cycle of the semiperiodic signal irrespective of the sampling rate.

Since the algorithm is run on each cycle of the semiperiodic signal, it is inherently

capable of capturing and incorporating small morphological changes that occur

due to stochastic or periodic variations in the signal’s partials.

An additional benefit with this approach is that the location of the knots can

potentially be meaningful, in and of themselves, to domain experts who may not

understand Fourier coefficients or other mathematical representations of the signal.

1.3.2 Optimal characteristic point estimation

The second contribution of this dissertation is an implementation of the spline

framework described above to optimally locate a predefined set of characteristic

points of a semiperiodic signal. The ECG signal is again used as an application
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domain for this contribution — in this case by defining a number of clinically-

important characteristic points and implementing a Bayesian figure of merit for

use by the optimization algorithm to estimate their locations on a beat-by-beat

basis.

The algorithm described in Section 1.3.1 initializes knot locations using a re-

cursive partitioning of the waveform and optimizes them using a genetic algorithm

to minimize the root mean square error (RMSE) between the observed signal and

its interpolated approximation.

Recursive partitioning results in a variable number of knots, which for the

ECG example is dependent on QRS complex morphology, making it difficult to

maintain correspondence between the knots and specific characteristic points. This

limitation necessitates post-processing to map knots back to characteristic points

after their locations have been optimized.

Using RMSE as the error criterion optimizes the difference between actual

and synthesized signals and results in knot locations providing the highest fidelity

signal estimate with the chosen interpolant, not necessarily those providing the

most accurate estimates of the signal’s characteristic point locations.

Furthermore, the previous approach neglects additional information present in

the relative times and amplitudes of knots describing the waveform (i.e., their prior

probabilities).

The second contribution uses the same framework, but with different choices for

the constituent algorithms, to address these shortcomings. It uses a predetermined

number of knots to represent the set of characteristic points whose locations are to

be estimated. For each of these knots prior probability distributions are obtained

using manual annotation of a training database by human reviewers.

Knot locations are initialized to the means of the priors, and a linear interpolant

is used due to its ability to place knots at locations of the desired characteristic

points while accurately representing the signal.
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In this implementation, a Bayesian figure of merit is used as the objective

function. This figure of merit is the a posteriori probability (or simply, posterior)

of the knot locations given the observed signal, and is calculated using Bayes’

Theorem. The benefit of this figure of merit is its ability to fuse information

provided by the waveform with prior knowledge derived from the training set.

Finally, to determine the optimal knot locations, a constrained coordinate opti-

mization algorithm is used to find the best value of the posterior. This algorithm is

gradient free, and searches for the best location of a knot at every location between

its immediate neighbors.

1.3.3 Prior probability density for optimization

To incorporate a priori information regarding characteristic points into the figure

of merit (and therefore into the optimization), the algorithm uses an estimate of

the joint probability density of the time of each knot and a measure of its curvature.

As with those used for knot initialization, this prior density estimate is also derived

from the reviewers’ manual annotations on the training set. In this case, however,

additional information is captured by the priors to aid the optimization algorithm.

In the ECG signal, the curvatures of sharp peaks, rounded peaks, and waveform

onsets and offsets are markedly different — respectively possessing high, moder-

ate, and mild curvatures. Incorporating a measure of curvature into the priors

gives the figure of merit greater ability to assess the goodness of each knot’s pro-

posed location during the optimization process. For example, using knowledge of

a knot’s curvature makes it less likely for the optimization algorithm to place a

knot corresponding to a waveform onset at the waveform’s peak.

The curvature of each knot is defined by the knot’s time and amplitude, and the

times and amplitudes of its immediate neighbors to the left and right. Although

priors could be constructed from the times and amplitudes of all three points, the

corresponding increase in dimensionality of the joint probability density would be
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problematic and require exponentially more training data.

Using a curvature metric calculated from relative times and amplitudes of a

three-tuple of knots condenses the six-dimensional space to only two dimensions,

comprising the knot’s time and its curvature. This requires far less training data

and makes the approach viable.

1.3.4 Estimation of priors for Bayesian optimization

This regards the means of determining prior distributions required for Bayesian

optimization of characteristic point locations. It is a necessary element for the

contributions described in Sections 1.3.2 and 1.3.3 above.

One historical criticism of Bayesian methods is their reliance on prior proba-

bilities which are often unknown. Practitioners have used a number of methods to

obtain priors, ranging from use of a uniform distribution to subjective approaches

which allow human experience and judgment to influence their value. The contri-

bution from this effort is the means to objectively obtain priors from a training

data set.

From this data set, a number of events are selected and manually annotated for

locations of interest by multiple reviewers. The statistics of annotation locations,

and measures derived from these locations, define the priors used by the Bayesian

optimization algorithm.

For the ECG application described in this dissertation, several hundred beats

were randomly selected from 40 subjects and predefined characteristic point loca-

tions were annotated manually by two reviewers. Statistics of each point’s location

and a measure of curvature (called the knot’s relevance value) were then computed

to estimate the prior probabilities for each point.

The flexibility of the approach extends to the scope of the priors. They can

be calculated across an entire subject population, or “tuned” to an individual,

focusing the priors on only one subject’s data. This is especially useful for biological
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systems whose characteristics can be highly dependent on the individual, and can

increase estimation accuracy by eliminating inter-subject variability.

1.4 DISSERTATION OVERVIEW

The remainder of this dissertation includes the literature review and chapters pro-

viding motivation for, and descriptions of, the basic spline framework and its im-

plementation for optimal estimation of characteristic point locations.

Chapter 2 is the literature review. It first describes a taxonomy used to frame

the review process and defines the focus, goals, perspective, coverage, organization,

and audience for the review. The structure provided by this taxonomy helps to

scope the review and to present the results in a cohesive manner. The review itself

is organized across the conceptual classes discovered in the process of applying the

taxonomy, comprising time domain algorithms, transform-based algorithms, pat-

tern recognition methods, model-based algorithms, and spline-based algorithms.

Chapter 3 describes the generic spline framework for parametrically represent-

ing semiperiodic signals. An instance of the framework is developed to illustrate its

capability for segmentation of the ECG signal, and to help understand tradeoffs in

signal fidelity and knot location for different interpolants. Results of the segmen-

tation are presented for a small set of signals exhibiting challenging morphologies.

Chapter 4 presents the main contribution of this dissertation, in which an

instance of the spline framework is developed for optimally estimating the char-

acteristic points of a semiperiodic signal using a Bayesian approach. The imple-

mentation is tested on a 200 signals from 20 subjects (not in the training set) and

the results are compared against manual annotations from human reviewers and

an accepted standard.

Chapter 5 provides a summary and conclusion for the dissertation and includes

other domains which may benefit from this approach, as well as areas for future

research.
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Appendix A shows the complete set of priors used in the optimization process

of Chapter 4. These are estimates of the joint probability density of the time of

each knot and its relevance, which is a measure of the signal’s curvature at that

point.

Appendix B describes the ECG data that were used in the effort of Chapter 4

for optimal estimation of characteristic points.
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Chapter 2

LITERATURE REVIEW

2.1 APPROACH

In order to provide focus and structure to the review process, this section adopts

Cooper’s taxonomy for literature reviews as described in [18,19,76]. This taxonomy

was originally intended for meta-analytic studies in education and psychology, but

it provides a good framework for defining and structuring any literature review.

In his taxonomy, Cooper classifies literature reviews across six characteristics:

focus, goal, perspective, coverage, organization and audience. The sections below

provide a very brief description of these characteristics as well as choices for each.

2.1.1 Focus

The taxonomy defines several potential focus areas, including research outcomes,

methods, and practices or applications. For this literature review, the focus is on

theories in order to establish the current state-of-the-art in waveform delineation

and annotation algorithms and how they relate to each other. This helps to iden-

tify higher-level themes in the literature and set the stage for the dissertation’s

contributions which advance new algorithms in this domain. The other focus ar-

eas are intended for social science research and are not directly applicable to this

domain.
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2.1.2 Goal

Goals for the literature review in the taxonomy include integration, criticism, and

identification of central issues. This literature review has two goals: to integrate

and synthesize previous research and to identify central issues. Focusing on these

goals exposes existing themes in the research and provides rationale motivating

this approach.

2.1.3 Perspective

This literature review does not advance a particular perspective; rather it provides

a neutral, objective representation of the literature. As in any engineering effort

all approaches have benefits and shortcomings and it is important to understand

both aspects — not only to inform use of various algorithms but also to help guide

future efforts.

2.1.4 Audience

This characteristic primarily manifests itself in the writing style of the review,

specifically use of jargon and detail as balanced against focus on implications of the

work [18]. The taxonomy identifies audiences of specialized scholars, generalized

scholars, practitioners or policy makers, or the general public.

For this literature review (and in fact, the entire dissertation) the audience of

this dissertation is assumed to be specialized scholars with deep domain experience

in signal processing and pattern recognition, but not necessarily in ECG analysis.

2.1.5 Coverage

This characteristic regards the extent of the literature review. The body of work

in waveform segmentation and annotation is very large, precluding any exhaustive

review that covers all the literature. Other options identified by the taxonomy
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include central or pivotal, and representative.

This review does not provide a review of pivotal literature, as this requires

establishing proof that the only publications reviewed are pivotal — and, more

problematically, that no literature fitting this criterion are excluded. Instead it

provides reviews of a representative sample of algorithms which includes most

interesting and important efforts in this space as identified by the search strategy

described below. This approach better informs reviewers of efforts historically

applied to solve the segmentation problem.

The literature search methodology to obtain representative coverage comprised

several stages. The initial stage was “search driven” and intended to identify a

starting set of literature in waveform segmentation and annotation of character-

istic points. Search terms were chosen to include segmentation, delineation, and

annotation of any type of semiperiodic waveform, but virtually all results were

related to biomedical signals. And of these results, most pertained to the ECG.

Detailed review of the initial literature identified new search terms and cited

publications of interest, which were the subject of subsequent reviews. This process

was repeated several times, until the rate of discovery of new publications was

significantly diminished and all citations of interest had been previously discovered.

Although not exhaustive, this approach was very fruitful and provided significant

coverage of algorithm development in this area dating back several decades.

2.1.6 Organization

This characteristic describes how the literature review is arranged: topics can

be presented historically, methodologically, or conceptually. A methodological

organization groups efforts employing the same research methodologies (usually in

the natural sciences, social sciences, or education) and does not lend itself to a

literature review focused on theoretical elements like algorithms.
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A purely historical organization presents all of the literature in a strictly chrono-

logical order. This may be suitable for reviews emphasizing the progression of

research efforts or change in practices over time [76], but for this effort a historical

organization would result in a highly “fragmented” view of the literature as there

is simultaneous effort on numerous approaches and virtually all approaches are

revisited over time. A strictly historical organization would result in a great deal

of interleaving of concepts in the literature review and make it difficult to integrate

and synthesize findings per the goal defined in Section 2.1.2.

To address these concerns, this review is primarily organized in a conceptual

manner, grouping works that share abstract ideas [18] — in this case an empirically-

determined classification of algorithm types. Within each conceptual class items

are organized historically. This approach illustrates the evolution of algorithms

over time in the different classes, aiding the goal of integration and synthesis. The

following section outlines the conceptual classes used in organizing the literature

review, and subsequent sections provide the review itself.

2.2 CONCEPTUAL CLASSES

The problem of automatic segmentation and annotation of semiperiodic signals —

specifically those from the ECG — has a very long history. Researchers have ap-

plied a vast array of signal processing and pattern recognition techniques to detect

QRS complexes and estimate the precise locations of onsets, offsets, and peaks of

their component waves reliably and accurately under challenging conditions.

Numerous solutions are described in the literature, and most employ a combi-

nation of algorithms to achieve best results under different constraints and assump-

tions. For example, reducing algorithm complexity at the cost of degradation to

accuracy, or improving noise immunity at the cost of increased computational bur-

den. Careful examination of the literature did not identify any broadly-accepted

taxonomy of algorithms. However the conceptual classes derived from this review
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are consistent with, and expand, those described in other works such as [89], [17],

[48], [96], [51], [31], [78], [2].

Since each approach is often comprised of multiple algorithms, it can be dif-

ficult to establish its membership unambiguously to a single conceptual class. In

these cases the publication is grouped into a conceptual class reflecting the most

significant innovation it describes.

This section provides a brief description of the conceptual classes identified by

the effort described above; subsequent sections are devoted to literature reviews

grouped by these conceptual classes.

Time-domain analysis. Literature in this conceptual class describe algorithms

operating in the time domain. Many examine the structural properties of

the signal and use empirically-derived thresholds and search windows to de-

termine characteristic point locations.

Transform-based algorithms. Numerous transformations have been applied to

semiperiodic signals to help enhance the signal, reduce noise, and improve

discrimination of characteristic point locations.

Pattern recognition methods. Publications in this class comprise either “soft

compute” or classic pattern recognition methods. Soft compute is defined as

a class of algorithms that exploit tolerance for imprecision, ambiguity, partial

truth, and approximation and include artificial neural networks (ANN), fuzzy

logic, evolutionary computing, and probabilistic reasoning.

Model-based algorithms. Broadly defined, models are mathematical representa-

tions of real signals that efficiently capture their essential characteristics [53].

Use of models for waveform delineation allows application of a set of powerful

algorithmic tools to improve accuracy and noise tolerance.
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Spline-based algorithms. Spline-based methods really belong in the time-domain

analysis conceptual class — and more specifically, in the segmentation-based

algorithms class that will be described in Section 2.3.2. But because there

is no literature describing their use for waveform delineation, Section 2.7

reviews efforts applying splines to ECG processing more generally, i.e., for

waveform compression, noise elimination, and certain types of analysis. Pre-

senting this class last also helps set the stage for subsequent chapters pro-

viding detailed description of the algorithms that are the subjects of this

dissertation.

For virtually all methods, the first step comprises preprocessing to reduce noise

in the signal. Typically three types of filtering are performed: high-pass for low-

frequency noise sources, low-pass for high-frequency noise sources, and notch fil-

tering for band-pass noise.

In the ECG signal higher frequency noise sources include muscle artifact, typ-

ically from movement of skeletal muscles close to the surface electrode, electrode

motion artifact caused by changes in electric potential due to relative motion of

the electrode against the subject’s skin (frequently exacerbated by dry electrodes),

and in surgical settings, interference from electrocautery knives. Baseline drift is

the most common low-frequency noise, typically caused by slow variations in pres-

sure on electrodes. And the most typical bandpass noise source is electrical power

line interference.

The reviews preceding Section 2.7 on spline-based methods below focus on al-

gorithmic innovations for waveform delineation; specifically determining onsets,

peaks, and offsets of some subset of the P, QRS, and T waves. Preprocessing

methods such as the filtering methods described above are extensively covered in

the ECG signal processing literature. So, assuming that the signal has been con-

ditioned prior to the delineation algorithm, the literature review does not provide

details on preprocessing unless it is a particularly novel approach that directly
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impacts the estimation of characteristic point locations.

Section 2.7 covers the use of splines in ECG processing more generally since

there is a dearth of literature describing their use in detection or estimation of

characteristic points, even though splines were recognized for this application in

1978 by [61].

2.3 TIME-DOMAIN ANALYSIS

Methods in this conceptual class operate on signals in the time domain, and it

contains the majority of algorithms. Due to limitations in computational resources,

earlier efforts focused on reducing algorithm complexity to make analysis tractable

on available devices. However, despite the advance of Moore’s Law which has

resulted in incredible gains in microprocessor capability, even more recent efforts

(such as [78], [79], [81], [63]) strive for low computational overhead to reduce

processing time and power consumption for applications in relatively constrained

systems like embedded platforms, mobile devices, and wearables.

These methods can have issues with noise immunity despite filtering because

there is significant spectral overlap between the QRS complex and noise caused by

muscle artifact and electrode motion. Using conventional filtering to completely

remove in-band noise can cause significant losses in the signal of interest and impact

the measures used to find characteristic points.

In addition, most methods described in this section are not optimal in any

sense and rely heavily on empirically-determined thresholds and search windows

for each component wave of the ECG signal. The high degree of variability in

electrophysiological signals, both inter-subject and intra-subject, can adversely

impact these approaches.
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2.3.1 Geometrical

A subclass of time domain algorithms described here as geometrical uses slope-

based measures of the signal to determine characteristic points. After performing

preprocessing as described above to reduce noise, these methods derive their funda-

mental features from the signal’s first and second differences. All of these methods

use heuristically-determined thresholds and search windows, looking for minima,

maxima, and zero crossings in various metrics to determine characteristic point

locations.

In [33] Hsiao-Shu et al. propose an algorithm that first identifies significant

points of inflection in the signal then thresholds the angles of each point to de-

termine the location of QRS onsets and offsets. Their empirically-determined

thresholds indicate an R wave if the inflection angle θ ≥ 115◦, and a Q or S wave

if θ ≥ 23◦ and the amplitude differences between Q and R, and between R and S

waves exceed the average amplitude variation for the signal segment under analysis.

Laguna’s slope-based algorithm described in [46] follows noise filtering with a

non-linear operation (squaring) to help discriminate between tall T waves and the

QRS complex. The signal is then differentiated to accentuate higher frequencies

corresponding to critical points. The resultant signal is first used as the basis for

a set of rules and thresholds to identify the QRS complex.

Following detection of the QRS complex, further low-pass filtering attenuates

the QRS complex to allow more accurate processing of the lower frequency P and

T waves in the signal. A different set of thresholds and rules are then employed

to detect onsets and offsets of the P and T waves in windows defined relative to

the QRS complex. Although the thresholds and search intervals take into account

physiologically significant limits, their values were experimentally determined by

the researchers.

Mukhopadhyay et al. [63] compute the first derivative of the signal after noise

reduction filtering then calculate its Hilbert transform. Using empirically-determined
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thresholds and search windows, they identify peaks in the transformed signal to

identify an R wave region. They then search the original time-domain signal for

a slope reversal in that region to find the precise location of the R wave. Q wave

(S wave) locations are determined by searching for slope reversals in the original

time domain signal to the left (right) of the R wave peak. QRS onset (offset)

points are obtained by searching to the left of the Q wave (right of the S wave) for

points of zero slope in the differentiated signal. A similar search in a window to

the right of the QRS offset is performed to locate the T wave.

The use of the Hilbert transform in this algorithm is only to accentuate areas

of higher frequency concentration in the derivative signal due to the bandpass

property of discrete time implementations of the Hilbert transform, not its more

customary application in signal processing to obtain an analytical representation

of the signal.

Mazomenos [55] describes a time-domain morphology and gradient algorithm

which uses a combination of extrema detection, slope information, and adaptive

thresholding — and estimates the 11 points indicating the onset, peaks, and offsets

of the P, Q, R, S, and T waves.

After noise filtering, a “feature signal” is calculated using a linear combination

of the first and second derivatives of the input ECG, which they call “gradients”.

They experimentally determined coefficients for the linear combination to atten-

uate the P and T waves while enhancing the QRS complex. After calculating

the slopes for each local extrema in the entire complex, they designate the ex-

treme point with largest slope value within an adaptively determined window of

the feature signal as the R wave. QRS onset and offset locations are determined

by searching the feature signal for values smaller than pre-defined thresholds in

regions to the left and right of the R wave.

In [103], Wallace et al. use a five-point difference equation to implement their
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slope calculation, effectively realizing a bandpass filter that provides some mea-

sure of noise attenuation. Following this filter they find local maxima to indicate

R wave locations, and search in neighborhoods around the R wave for extrema

corresponding to Q and S waves.

In the only non-ECG publication reviewed here, Naidu et al. [66] apply a time-

domain search to detect characteristic points of the impedance cardiogram (ICG).

ICG is a non-invasive procedure used to estimate stroke volume and several other

measures of cardiac activity by computing the impedance of the thorax using a low-

current signal of 20–100 kHz. In their algorithm the R wave of a simultaneously-

captured ECG signal is used as a reference point to determine the peak of the

ICG cycle, which then establishes search windows for characteristic points. These

points are defined simply by finding maxima and minima in the search windows.

Salih et al. [81] describe a geometrical approach that uses rising and falling

edges of a potential QRS complex to specify the vertices of a triangle composing

the entire complex. The base of the triangle is used in a second stage to search for

points of inflection comprising the onsets and offsets of constituent waves.

Numerous other researchers use similar approaches with minor adaptations

to filtering, search region boundaries, and threshold values. To address baseline

wander in the waveform, Gupta et al. [31], applies a linearly-interpolated correction

term before applying slope thresholds in the regions preceding and following the

QRS complex. Other variations include use of the second derivative to further

accentuate changes in slope and highlight characteristic points [32], and squaring

the second derivative to amplify changes prior to searching [78].

2.3.2 Segmentation

Segmentation-based methods also operate in the time domain but approaches

falling in this conceptual class have a primary innovation based on segmenting the

signal and using the endpoints of each segment as potential characteristic points.
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Spline-based algorithms are properly a subset of this conceptual class (as they

segment the signal in the time domain), but in order to provide a more thorough

review of splines in ECG signal processing and to set the stage for the remaining

chapters of this dissertation, they are discussed separately in Section 2.7.

In [42], Koski proposes a method of approximating a digital signal with a

“suitable continuous broken line” described as a series of endpoints drawn from

the original signal samples. The manuscript describes experiments to find the best

endpoints by comparing the residual error of linear approximations using various

segmentation methods and distance metrics.

The authors recognize the high degree of variability of biomedical signals which

greatly complicates determining suitable thresholds, thereby necessitating an adap-

tive approach. To that end the first step of this algorithm calculates the error

distribution of a few segments at the beginning of the signal and uses a statistical

approach to set an error threshold for segmentation, i.e., they sort the residual

values during the initial training period and take the value that lies above P% (in

practice, they use P = 90) of collected residuals as the threshold.

For their distance function, they use a modified Euclidean metric that mitigates

errors of a simple amplitude distance in areas with very high signal slope (such as

the QRS complex). Their new metric uses the conventional Euclidean distance if

the point in question is outside of the normals of the two points used for linear

interpolation; otherwise it calculates the distance of the normal between the point

and interpolated line.

For segmentation, the algorithm starts by selecting a subset of data points from

the signal and initializes the first two endpoints with the first and last points of this

segment. As long as the sum of distances between all points in the segment and a

linear approximation between the endpoints is less than the threshold (calculated

using the modified Euclidean distance described above), they add more points to

the subset and recalculate the maximum distance.
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When the error threshold is exceeded, they introduce a new endpoint at the

data point with greatest distance to the linear approximation. Distance metrics are

computed between points and all resultant lines, and new endpoint introduction

is repeated until the overall error is once again below the threshold.

This approach yields endpoints at all “significant” points of the signal, as de-

termined by the choice of P and the distance metric. Features represented by the

endpoints should certainly include the onset, peak, and offset of the QRS complex

due to their prominence. But it is possible that lower-amplitude P waves may

be missed in the segmentation process, necessitating a lower error threshold and

many more endpoints.

In [41], Keogh et al. identify and evaluate several methods for segmenting time

series data and propose a hybrid approach that outperforms others. Keogh iden-

tifies three major approaches to this segmentation problem: sliding window, top

down, and bottom up.

Sliding window algorithms are defined as those that anchor the left point of the

potential segment at the first data point of a time series then increasingly lengthen

the segment to the right until the approximation exceeds an error bound. The class

of top down algorithms considers every possible partitioning of the time series seg-

ment under consideration and introduces a new endpoint at the best location (i.e.,

the one with the greatest error). The resultant subsections are then evaluated,

and if the stopping criterion is not met the algorithm recursively continues. Con-

versely, bottom up algorithms start with the finest possible approximation and

merge segments until a stopping criterion is met.

On the test data sets reported in [41], top down and bottom up performed with

lower error than sliding window. Sliding Window algorithms, however, are the

only ones that support on-line data processing; top down and bottom up require

all available data prior to processing and must be run in batch mode. To get

the benefit of online processing with the accuracy afforded by the other methods,
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Keogh proposes a new approach which combines the sliding window and bottom

up algorithms.

In this approach, the working buffer is large enough to support approximately

five segments. They apply a bottom up algorithm to the buffer and report the

leftmost segment. Subsequently they remove the segmented part of the signal and

read more data in using a sliding window algorithm. They repeat this process

indefinitely, making it an online algorithm. On a data set comprising ECG, finan-

cial, manufacturing, and simulated signals, this hybrid approach outperformed the

three existing classes of segmentation algorithms as measured by squared residual

error.

Cast in this framework, Koski’s algorithm [42] is an example of a sliding window

followed by bottom up consolidation, using an adaptive threshold based on signal

statistics.

Another example of top down segmentation was described in [27] and [28] for

ECG waveform compression, and more recently as part of the spline framework in

[29]. In both of these applications, the fidelity of the representation is not a primary

concern: for the compression algorithm any signal subtleties not captured by the

linear segments become part of the residual which is compressed and transmitted

along with the signal endpoints identified by partitioning.

And for the demonstrated applications of the spline framework to determine

waveform characteristic points, the accurate estimation of the segment endpoints

is the most important result, not fidelity of reconstruction. For future applications

of the framework where signal fidelity is important, it may be beneficial to use a

hybrid segmentation algorithm as well as a non-linear spline interpolant. Details

of this approach are discussed in detail in Section 2.7.

Boucheham et al. tout the advantages of a similar top down recursive approach

in [11], using the characteristic points so identified for R wave detection and making

a case for their potential use in detecting other characteristic points.
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In [102], Vullings et al. use dynamic time warping (DTW) to locate waves of

interest in the ECG signal. DTW provides a mathematical framework for com-

paring and identifying the best match between two patterns exhibiting temporal

variation in their features.

Vullings applies DTW to the slopes of a linear segmentation of the ECG signal

generated using the hybrid sliding window and bottom up algorithm described

by Koski in [42] and summarized above. Following segmentation, the signal is

decomposed into three overlapping regions: one preceding the R wave, a narrow

region including the QRS complex, and another region following the QRS complex.

Comparing the regions from each beat under consideration against a set of reference

beats provides the best match and corresponding characteristic point annotations.

Obtaining the reference beat is obviously of great importance. To handle the

inevitable and significant variability in physiological signals, the researchers man-

ually annotated several hundred beats to indicate correct locations of eleven key

characteristic points. They then used the DTW algorithm to recursively compare

each segment of the beat under consideration against corresponding segments of

all reference beats and determine the best match using a slope difference metric.

The effect of DTW is application of segment annotations of the best-matching

reference to the beat under consideration. This essentially filters out all extraneous

endpoints leaving only the desired characteristic points.

2.3.3 Template based

In [108], Zoghlami et al. describe a “fitting” approach based on a template derived

from the subject’s own ECG signal and intended for use in wireless body networks

with limited computational resources. During the calibration stage, a represen-

tative beat for a subject is manually segmented into regions containing the QRS

complex, P, and T waves. They create templates for each region as tables contain-

ing the time and amplitude values of the signal in that region. For each template,
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they calculate four parameters specifying the height, width, baseline level, and

location of the region in the representative beat.

During the learning stage, a heuristic-based approach first determines the loca-

tion of the R wave, then searches windows around that location to provide initial

estimates of the locations of the P and T waves and their amplitudes. Gradient

searching in those regions provides estimates of the remaining two parameters for

the beat: width and baseline.

For each region (QRS, P, or T) the appropriate template is fitted to the data

points using the Levenberg-Marquardt algorithm (LMA) to obtain the optimal

set of four parameters describing the beat. LMA provides a numerical solution

minimizing the squared error between an empirical function and a parameterized

model curve [108].

Finally, they calculate component wave locations and amplitudes using the

parameters that optimally represent the beat with respect to the template.

2.3.4 Filter based

This section describes a few time-domain approaches whose primary contribution

is the use of specialized filters to delineate the signal.

In [91] Soria et al. describe a system based on an adaptive filter to identify

the offset of a T wave for a specific subject. Their algorithm does not appear

to be truly (continually) adapting; rather it “adapts to the criterion followed by

each cardiologist.” After having a cardiologist annotate a characteristic point in a

series of beats, they determine an adaptation constant as a function of the distance

between the characteristic point and the corresponding peak (which is found by a

simple amplitude criterion).

The constant is calculated to have the error signal from the adaptive filter to

generate a peak at the desired location representing the offset of the T wave. After

applying the adaptive filter to the signal, the first peak that occurs in the output
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of the adaptive filter following the T wave corresponds to its offset time.

In [94], Sun et al. describe an algorithm using morphological filters to address

the shortcomings of linear filters — specifically their inability to address the sig-

nificant spectral overlap between the ECG signal and various noise sources. Mor-

phological filters are nonlinear filters designed to highlight characteristic shapes of

a signal under analysis as indicated by a structuring element: a simple constant

shape which the filtering operation probes for fits in the signal.

In this effort, they define a multi-scale morphological derivative operator and

use it instead of a conventional differentiation to identify critical points correspond-

ing to the signal’s characteristic points.

Morphological derivatives are defined in a manner similar to conventional deriva-

tives, except they use the erosion and dilation operators as the basis for differences

in the numerators of the derivatives from the left and right, respectively. They

further extend these derivatives by introducing a scaling factor in the denominator

of the difference between the left and right derivatives.

Using a flat structuring element as the basis for the erosion and dilation op-

erators results in a computationally simple algorithm to calculate the multi-scale

morphological derivative. Examining the output of this operation for local extrema

identifies onsets, peaks, and offsets of component waves in the ECG signal.

To discriminate between different component waves, they determined threshold

values for the local extrema. The thresholds were based on analysis of histograms

of data after filtering by the morphological derivative operation.

2.4 TRANSFORM BASED

Although transformation to the frequency domain has been applied to the ECG

signal, the majority of literature describes its use in detecting arrhythmias ([4],

[13], [62], [26]) or for compressing the signal ([77], [3], [44]).

There appears to be only one effort using the Fourier transform of the signal
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for delineation: in [64], Murthy et al. describe an approach using filtering in the

frequency domain to delineate component waves of the ECG. Their method is

predicated on the observation that a component wave in the time-domain ECG

signal (P, QRS, or T waves) maps to a group of complex sinusoids in particular

bands in the frequency domain.

For delineation of each component wave, the frequency-domain representation

is first shifted so a low-pass filter (in frequency) can be applied to eliminate the

other components. The result is then shifted back to its original frequency and

subject to an inverse DFT. This recovers a time-domain signal comprising only the

component wave of interest. This signal is then smoothed and scanned to find the

location of the peak. Windows on each side of the peak are then searched to find

the onset and offset points using a heuristically-determined amplitude threshold.

To determine the amount of frequency shift required and the cutoff frequency

for the low-pass filter, this method requires knowledge of the locations of each

component wave in the original time domain signal. Given this requirement, the

authors do not make clear why the delineation could not simply be accomplished

in the time domain.

2.4.1 Empirical mode decomposition

Another transform-based method uses the empirical mode decomposition (EMD)

algorithm. EMD facilitates analysis of non-linear or non-stationary data by first de-

termining a set of intrinsic mode functions (IMF) which are essentially empirically-

determined bases for the signal under analysis. It then decomposes the signal into

a sum of IMF components, each representing different “oscillatory modes” present

in the signal.

In [6], Arafat describes use of the EMD to detect wave boundaries in the ECG

signal. They note that characteristic points of the ECG are best represented by

the first three IMFs which correspond to the highest frequency oscillatory modes
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present in the signal. To detect the R wave, they create a metric by summing the

values of these three IMFs, thresholding, and finding the maxima. QRS onset and

offset are determined by finding zero-crossing points of the metric on each side of

the R wave.

To find P waves and T waves they first isolate a signal segment by locating the

peak in a window to the left (or right) of the QRS complex in the original signal.

They then generate an effectively low-pass signal on each side of the QRS complex

by subtracting sums of the first two or three IMFs from the original time domain

signal. The resultant low-pass signal is searched for local minima or maxima to

find the onset and offset points.

2.4.2 Wavelet transform

By far the most widely researched transform-based method for signal delineation

in the literature uses the wavelet transform. By applying translated and scaled ver-

sions of a basis function (the basic, or “mother” wavelet) to a signal, the wavelet

transform provides a multi-scale representation that addresses well-known diffi-

culties of more traditional methods in representing signals requiring simultaneous

localization in both time and frequency domains. For example, using a Fourier

transform with a long time domain signal provides good resolution in frequency

but poor resolution in time. Conversely, a signal with short duration provides good

time resolution but poor frequency resolution.

The utility of having simultaneously high resolution in both domains is apparent

given the definition of characteristic points presented in Section 1.2.2: they are

typified by highly time-localized changes in the signal’s frequency components;

any method providing accuracy in both domains can help identify such points and

allow discrimination of various component waves and certain types of noise.

The first significant work in applying wavelets to ECG delineation is that of

Li et al. described in [48]. In this effort, Li first determines the scales for the
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wavelet decomposition by considering the bandwidths of equivalent filters to the

wavelet decomposition at several different scales. Mapping these to the frequency

spectrum of the QRS complex suggests the use of four scales spanning the range

of 4 Hz to 125 Hz.

Following wavelet decomposition of the signal using the scales identified above,

they build a very comprehensive set of rules using search windows, numerous

threshold values, and comparisons across different scales to find the “modulus

maxima” (zero-crossing points in wavelet transforms) corresponding to compo-

nent wave peaks of interest. Other characteristic points comprise onset and offset

points for the component waves; these are determined by examining output of the

wavelet transform at a lower scale (higher frequency) by finding the “beginning”

of the modulus maximum occurring before the peak, and “ending” of the modulus

maximum following the peak.

Di Virgilio [101] describes a similar (and contemporary) approach to Li’s, ex-

cept they use a digital filter bank — not a direct implementation of the wavelet

transform — to perform the multiscale decomposition. They also expand the num-

ber of scales to cover six bands ranging from 5 Hz to 320 Hz, but only detect the

peaks of component waves (P, Q, R, S, and T). The higher-frequency components

(Q, R, and S) are detected by thresholding the output of the third component. The

lower-frequency components (P and T) are detected using the fifth component after

subtracting the previously-identified QRS complex from the signal.

Andreão [5] and Krimi [43] use wavelets to obtain features which are subse-

quently analyzed with a hidden Markov model (HMM), reviewed in Section 2.6).

The powerful multiscale localization capability of the wavelet approach is used to

generate better signal segments as features for the HMM. [5] also provides compar-

ative results in P, QRS, and T detection and delineation between several different

wavelet functions, concluding the Mexican Hat Wavelet having the best overall

performance.
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The wavelet transform provides very good time-localization of frequency changes

in the signal, but its output is a superset of the characteristic points. This ne-

cessitates a potentially large and complex set of heuristically-derived rules and

thresholds, or other post-processing to accurately determine the desired locations.

2.5 PATTERN RECOGNITION

This section reviews publications whose primary innovation is in the class of pat-

tern recognition algorithms such as neural networks, syntactic pattern recognition,

fuzzy logic, and statistical methods.

In [59], Mehta et al. use Fuzzy rules to identify P and T wave peaks detected

in the time domain. The algorithm starts by finding a large number candidate

peaks in search windows before (for the P wave) and after (for the T wave) the

R wave. Candidates are identified by calculating a conservative threshold from

peak-to-peak amplitudes observed in the training data, and Fuzzy rules are used

to select from the two best candidate peaks in a given search segment (if only one

candidate is identified in a segment, it is taken as the real peak).

Their rules are based on three fuzzy membership functions: total energy, frac-

tional of total energy to incremental energy, and average peak-to-peak amplitudes.

The membership functions simply calculate the ratio of each of these measure for

a given peak to the sum of the measures for both peaks.

After computing individual membership values they are combined by averag-

ing and defuzzified to make the decision: the candidate peak whose combined

membership function exceeds 0.5 is chosen as the real peak.

2.5.1 Neural networks

Szildgyi et al. [96] compare a neural network approach against one using wavelets

to detect QRS complexes, P, and T waves. They use seven scales for their wavelet
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approach, spanning bands from approximately 1 Hz to 100 Hz. Unfortunately they

do not provide any detail on how they analyze the wavelet decomposition to de-

termine presence of component waves. For their neural network approach, they

use a three-layer network with least mean square training. Their neural network

implementation achieved slightly better sensitivity in detecting QRS complexes

than their wavelet approach.

In [95], Suzuki et al. apply an adaptive resonance theory network (ART2) to

detect characteristic points. They adopt a geometric approach to derive features

from the underlying signal by fitting a triangle to the region between the Q and

R waves of the ECG, and another between the R and S waves. They train their

network with 100 such patterns for each side, each with a different base length.

During analysis, they feed a 100 ms signal segment on each side of the R wave

into the appropriate ART2 network (from the left side for Q wave, from the right

side for S wave). The network provides the best matching triangle from its long-

term memory. This result is used as an approximate location for the Q or S wave.

Their exact locations are determined by comparing the signal slopes against a

threshold value in a heuristically-defined search region.

After every detection, the ART2 network is trained with the actual signal

segment determined by the analysis above. As a result, the network self-organizes

with new data and the template patterns eventually change from right angles to

reflect the true ECG signal.

2.5.2 Clustering

Saini et al. present a delineation algorithm for multi-lead ECG data using the k-

nearest neighbor (kNN) algorithm in [79]. kNN is a statistical pattern recognition

algorithm that learns representative exemplars from a training set then provides

the best match based on a similarity measure. An incoming feature vector is de-

termined to belong to the category to which the majority of its k nearest neighbors
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belong.

In this effort, squared slope values for each of eight ECG leads are used to form

a feature vector. The classifier is trained for QRS detection by setting the label to

+1 for each eight-dimensional feature vector occurring during the QRS complex

in the training data, and to −1 otherwise. During classification any train of +1

outputs whose duration exceeds the average length of +1 outputs is determined

be a true QRS complex.

The onset and offset times of the complex are those times at which the classifier

output toggles to +1 and −1, respectively. The location and value of the R wave

peak is determined by searching the +1 region for its maximum value in the original

time series.

The T wave is detected next. First the QRS complexes are removed by replacing

them with the baseline. The kNN classifier is trained as described above with +1

labels for each sample interval during the T wave, and −1 labels otherwise. T

wave peak value, and onset and offset times are obtained as described for the R

wave above.

Finally, the P wave is detected by replacing the T wave regions with baseline

so the signal does not include QRS complexes or T waves. Training and detection

of P waves are as described for the T wave above.

2.5.3 Syntactic pattern recognition

A number of segmentation-based algorithms employ syntactic pattern recognition

principles. Skordalakis provides a good overview of this approach in [89]. Funda-

mentally, the syntactic approach parses the signal using a grammar that describes

patterns of interest in terms of a set of primitives, which can be considered to be

a basis set for representing the signal. Due to ease of computation and encoding,

the grammars reviewed in [89] all use primitives obtained from linear segmentation

of the signal. These primitives are either based on the slope or derivative energy
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computed from the linear segments.

Slope can be encoded simply as positive, negative, or zero (subject to margin

of ǫ), or it could be further qualified to various degrees such as small positive,

intermediate positive, large positive, etc. Some of the grammars also encode the

segment start and end times as part of the primitive. Grammars using primi-

tives derived from slope are used to recognize peaks in waveforms and to describe

context-sensitive and time-varying aspects of the ECG.

Only one of the grammars uses an energy metric as a primitive. The metric is

computed by squaring the first derivative of the signal and encoding the magnitudes

and durations of of the resultant peaks. The goal of this grammar was to detect

QRS complexes in the ECG waveform.

In [89] and [42], context-free grammars are noted to be inadequate for represent-

ing ECG waveforms due to importance of context in this domain, use of grammars

with increased semantic description capability, such as attribute grammars, are

recommended as a “proper tool for the description of ECG patterns.” Attribute

grammars associate numeric, non-structural constraints on the primitives describ-

ing the signal. The attributes are determined during primitive extraction and used

during recognition to qualify the parser’s actions (controlling the parsing process)

and quantify parameters.

Although attributes improve the accuracy and noise immunity of syntactic

approaches, their presence increases the number of thresholds and heuristic rules

that must be determined to benefit from their use.

Following this direction, Trahanias and Skordalakis [99] implement a syntactic

approach based on an attribute grammar and expand the set of primitives to

include waveform peaks and parabolic segments in addition to the linear segments

described above. They assign seven attributes calculated during the extraction

phase to each primitive pattern. These include the time and amplitude for a peak

location and its boundaries, and an energy metric of the peak. Parabolic and
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straight line segments are assigned four attributes: the time and amplitude of the

start and end points.

In [99], Trahanias et al. extract primitives using empirical criteria. After de-

tecting peaks in the raw signal they model the region around the peak using a

cubic spline function. Precise peak locations are indicated by points of maximum

curvature in the resulting interpolant. If it is determined that a segment exists

between two consecutive peaks, a least-squares fit decides if the segment is linear

or parabolic.

The attribute grammar implemented in [99] requires a large number of syntac-

tic rules and numerous empirically-determined thresholds. These thresholds are

applied for various width, amplitude, angle, and energy measures in the course of

parsing the signal using the grammar and using it to identify points of interest.

In [42], Koski et al. describe an segmentation-based approach similar to syn-

tactic methods but using an attributed finite automata instead of a grammar and

parser. This algorithm also requires decomposition of the signal into primitives.

As with the previous approaches, they first segment the signal into linear regions

using a sliding window approach followed by bottom up consolidation. Their prim-

itive comprises a label and two associated attributes. The label is determined from

the slope of the segment. Statistical analysis of ECG segment slopes, balanced by

the tradeoff between accuracy and computational complexity, led them to map

the slope into one of five labels (regions) between −90◦ and 90◦. The attributes

associated with the label to form the primitive are the duration of the segment

and the span of its amplitude.

Instead of building a grammar, they create a set of ten automata (finite state

machines) to represent the signal. Each automaton is responsible for recognition

of one component of the ECG signal (i.e., segment, wave, or peak). Automatons

invoke each other based on the initial finite state machine in what can be described
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as a backtracking approach: if a “called” automaton succeeds in parsing the pat-

tern, the “calling” automaton resumes at the end of the parsed pattern. If the

called automaton does not succeed, the calling automaton backtracks and tries

another automaton until a match is found or the segment is determined to not

comprise a pattern of interest.

Syntactic approaches were pursued in the literature in the 1980s and 1990s,

but there is a dearth of publications investigating these approaches after the mid-

1990s. Limitations in syntactic analysis are partially responsible — a significant

issue identified in [89] is the difficulty in representing time-varying patterns using

syntactic methods.

The closest modern analog to these algorithms are those based on Markov

Models, which are the natural successor to syntactic parsing and finite state au-

tomata in the presence of noise and ambiguity. Such approaches are reviewed in

Section 2.6.

2.6 MODEL BASED

Various models have been investigated in the literature to facilitate ECG analysis

in general, and in particular, waveform delineation. The ability of models to effi-

ciently represent the signal allows application of mathematical tools to accurately

determine characteristic point location.

A pole-zero model of the ECG is proposed by Murthy in [65]. Although this

effort does not use the model to estimate characteristic point locations, it does

delineate the signal into its component waves and could be expanded to find wave

onsets, peaks, and offsets by examining the model parameters or its output. At a

high level, the goal of the algorithm is to establish a system of poles and zeros in

the z-domain whose amplitude response is highly correlated with the component

wave patterns in the time domain signal.

The first step in achieving this goal is to compute the discrete cosine transform
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(DCT) of the entire QRS complex. The DCT essentially provides the impulse

response of the underlying system being modeled (in this case, the subject’s heart).

The algorithm next uses the Steiglitz-McBride method to determine an IIR filter

with that impulse response, thereby modeling the QRS complex as a set of poles

and zeros. The rest of the algorithm comprises expanding the IIR filter into a set of

partial fractions, regrouping them, and computing the inverse DCT of the impulse

responses of the regrouped functions to obtain the time-domain component waves.

2.6.1 Hidden Markov models

As noted in Section 2.5.3, approaches based on Hidden Markov Models (HMM)

have largely replaced those using syntactic pattern recognition. Markov models

are probabilistic memoryless state machines. The state of the model at any time

is based on only its previous state and a transition probability.

HMMs are Markov models in which the observed data sequences are also proba-

bilistic, representing “hidden”, true states which are unobservable. HMMs provide

a powerful framework for estimating the state of a hidden stochastic process based

on a set of observations. For the arrhythmia analysis problem, the states corre-

spond to the underlying electrical activity of the heart and the observed sequence

is the ECG signal.

In [17], Coast et al. apply HMMs to identify component waves and perform a

“complete” arrhythmia analysis. Although the manuscript is focused on arrhyth-

mia analysis, to identify supraventricular arrhythmias their algorithm is capable

of detecting P waves. As such, it provides the earliest instance of HMMs used to

delineate (at least part of) the ECG signal.

An HMM is represented by a four-tuple comprising the set of states in the

model, the initial state probabilities, a matrix of transition probabilities between

states, and a vector of output probabilities modeling the unobservable (“hidden”)
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underlying stochastic process. Using the HMM requires estimating the model pa-

rameters — such as transition and output probabilities — from training data and

calculating the posterior probability that a given observation sequence was gen-

erated by the model. Maximizing this posterior probability indicates the optimal

state sequence and provides insight into the underlying cardiac state of the sub-

ject. Coast’s algorithm is patient-dependent: models have to be generated for each

individual “before and during analysis.”

Coast’s algorithm uses a separate model for each class of beat to be detected

(normal, ventricular, or supraventricular). In the models a state is assigned to each

component wave and to the intervals between them. For training, they manually

segmented three examples of each beat class and used the mean values of the

segments as features for the model.

During analysis, they use the Viterbi algorithm to determine the best state

representing the observed ECG signal on a sample-by-sample basis. By simulta-

neously evaluating multiple models they achieve continuous arrhythmia analysis.

The presence or absence of a P wave is indicated by the best sequence picked by the

algorithm: only a normal beat has a P wave which is lacking in supraventricular

and ventricular beats.

In [16], Clavier et al. present another HMM-based algorithm to improve accu-

racy and address the patient-dependence of Coast’s approach [17]. In this effort,

they subdivide each component wave into multiple linear segments and use the

segment slope in addition to its mean amplitude as features.

Clavier’s model comprises 12 states based on a highly-stylized prototype beat.

The states include segments and parts of component waves of a typical QRS com-

plex, e.g., rising (left) and falling (right) parts of the P and T waves, rising and

falling parts of the R and S waves, and several isoelectric segments connecting

these components.

This preliminary effort was trained with 50 beats from 10 different patients
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and demonstrated qualitative success in segmenting several beats from different

subjects.

In [43], Krimi et al. combine the multiscale benefits of the wavelet transform in

localizing edges with the statistical power of HMMs for determining the structural

properties of a semiperiodic signal. In this approach Krimi first expands on the

wavelet method described by Li in [48]. By combining the output of the wavelet

transform at two different scales they determine onset and offset points (“edges”)

more robustly. These edges are used to define signal segments which are the basis

for the Markov model.

An effort by Andreão et al. [5] describes a similar approach in combining the

wavelet transform and HMM to delineate the ECG waveform. The overall approach

is very similar to that of [43], with minor differences in the structure of the HMM.

2.6.2 Dynamical ECG model

In [58], McSharry et al. describe a dynamical model to realistically simulate an

ECG signal. The model is based on three coupled differential equations which

generate a three-dimensional trajectory around a limit cycle in state space. The

limit cycle defines a circular orbit of unit radius in two of the dimensions, with each

revolution corresponding to one interbeat interval. At distinct points on this radius

the trajectory is deflected upward or downward by “attractors” or “repellers” which

are Gaussian functions with a specific mean representing the angular location of the

wave in the circular trajectory, an amplitude to provide the amount of deflection,

and a variance specifying the width of the deflection.

This model provides a very powerful and general representation of the ECG

signal, effectively as a sum of Gaussians. The angular velocity and parameters

of the Gaussians can be modified to accurately simulate numerous physiological

conditions.
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Although in the original manuscript the goal is primarily to “provide a bench-

mark for testing numerous biomedical signal processing techniques” and to es-

tablish their properties at “different noise levels and sampling frequencies”, the

model formed the basis of several promising state space approaches not just for

simulation, but applied directly for signal analysis and compression. The following

publications use this state space model for delineation of the ECG waveform.

In [83], Sayadi et al. describe a model-based method for fiducial point extrac-

tion in an ECG with baseline wander (low frequency noise). To remove baseline

wander they decompose the signal into several bands using a wavelet transform.

Outputs from the transform at scales reflecting the lower-frequency baseline drift

components are thresholded. Performing an inverse transform results in a baseline

corrected version of the original signal.

To determine fiducial points, they fit the clean signal to the McSharry’s dy-

namical model [58]. This fit is achieved by minimizing the mean squared error

between the signal and the model over the three parameters specifying the Gaus-

sian components of the model. These parameters are the mean, which provides the

angular location; the amplitude, which is the height of the wave; and the variance,

which represents the spread of the wave. To facilitate the optimization process,

they first determine approximate location of the desired fiducial points by applying

heuristic thresholds to the first and second derivatives of the signal in the vicinity

of an R wave, then solve the optimization equation to determine the exact model

parameters.

Once the model parameters have been established, they use the 99% confidence

limits of each Gaussian (i.e., the 3σ point) as the onset and offset time of the

corresponding component waves. Peak locations and their values are obtained

directly from the Gaussian mean and amplitudes, respectively, determined from

the optimization.

Sayadi followed this effort with another similar approach described in [82] and
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[84] which uses an extended Kalman filter (EKF) to estimate the system’s state

and subsequently all fiducial point locations. The EKF structure incorporates

the dynamical state space model of McSharry [58], modified to use autoregressive

dynamics: since each Gaussian parameter will have very little variation from one

beat to the next, its value can be estimated using a first order autoregressive model.

Their EKF incorporates 17 state variables: the system phase representing the

current angular location of the model around the limit cycle, the estimate of the

ECG signal (summation of all Gaussians), and 15 state variables describing the

mean (location), amplitude (height), and variance (spread) of each of five Gaus-

sians representing the P, Q, R, S, and T component waves. The EKF adapts to

changes in the underlying ECG signal on a sample-by-sample basis and eliminates

the need for a non-linear optimization at each cycle of the ECG as used by [83].

Fiducial point locations are determined using the 3σ point of each Gaussian (in

a manner similar to [83]), but with the addition of limits bounding the location.

The limits are derived from zero crossings of slope changes in the estimated signal

derived by the EKF, and estimate the amount of fluctuation in each fiducial point’s

location over time.

This EKF approach is extended by Akhbari et al. in [2] to use 25 state variables

(vs. 17 state variables in [82] and [84]). Their states are: the system phase,

three states modeling the P, QRS, and T components (in their entirety), and 21

states modeling the mean, amplitude, and variance of seven Gaussians representing

component waves. In their model they use two Gaussians for the P and T waves,

in order to allow modeling asymmetries in these components.

To address stability concerns with the EKF approach, in [49] Li et al. describe

another approach based on McSharry’s model but using particle filters to estimate

model parameters. Particle filters are a sequential Monte Carlo (SMC) algorithm

that approximate the optimal Bayesian state estimate for arbitrary joint proba-

bility distributions of a system’s states and a set of observations [12]. They are
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particularly applicable for estimation of non-linear dynamic systems for which the

hidden states and observations are not jointly Gaussian (in which case the optimal

estimator would be the Kalman Filter).

In this publication, Li proposes a particle filter whose sample values are ad-

justed with a General Regression Neural Network to mitigate sample degeneracy

issues. In order to better represent asymmetrical component waves (a symptom

of several disease conditions), they model each wave (P, QRS, and T) with two

Gaussians: one for its left part and another for its right. As in approaches us-

ing McSharry’s model above, the state variables specify the mean, amplitude, and

variance of the Gaussians representing the component waves, and they are evolved

by the particle filtering using a random walk process. As before, fiducial point

locations representing the onsets and offsets of characteristic waves are obtained

using the 3σ point of each estimated Gaussian.

Another Bayesian model-based approach is described by Lin et al. in [51]. In

that effort Lin describes use of a partially-collapsed Gibbs sampler (PCGS) to

delineate the P and T waves of an ECG signal. Gibbs samplers are a Markov-

chain Monte Carlo (MCMC) method that facilitate the calculation of a Bayesian

marginal posterior distribution of a state given a set of observations.

In this effort, Lin restricts his approach to P and T wave search blocks that

are created by extracting and concatenating several successive left (for P) and

right (for T) neighborhoods of previously detected QRS complexes using offsets

determined by the current R-to-R interval (heart rate).

Lin then models the signal in these search blocks as the convolution of an

unknown impulse response with an unknown input pulse sequence, with additive

Gaussian noise. By further decomposing the model, he obtains a parameter vector

fully describing the model. The model equation is also used to derive a likeli-

hood term representing the conditional probability of the observed data given the

parameter vector. Priors are assumed as a Bernoulli-Gaussian sequence.
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The complexity of computing the resulting posterior distribution precludes use

of the more commonly used estimators such as mean squared error and the maxi-

mum a posteriori estimator, so the PCGS is used to create the Bayesian estimate.

In [50], Lin et al. use the same model as [51] but employ a particle filter ap-

proach. Specifically, to address concerns with computational complexity with the

increasing number of particles, they propose a marginalized particle filter to reduce

the number of parameters (and particles). Linear state parameters are marginal-

ized out and estimated using one Kalman filter per particle. The nonlinear state

variables are then estimated using a particle filter.

2.7 SPLINE BASED

The use of splines for ECG processing has been primarily focused in the areas of

waveform compression ([35, 39, 45, 52, 86]) baseline wander elimination ([8, 23, 56,

60]), and waveform analysis ([34], [38], [87]).

Generally, compression efforts use the spline’s knots as a compact representa-

tion of the signal and use the interpolant to accurately recreate the waveform itself.

Reconstructed signal fidelity is very important in compression applications, and as

noted by [39], “The segmented nature allows splines to adjust very efficiently to

local characteristics of the data and represent it better (with smaller deviations)

than other classes of functions.”

For compression applications, various methods are used to determine knot loca-

tions. [35] uses extrema or points of large curvature from the the second difference

of the signal. [86] compresses only the segment between consecutive beats, using

a syntactic approach with an attribute grammar to determine the best knot lo-

cation. In a manner similar to bottom up segmenting described in Section 2.3.2,

[39] starts with a very large number of knots, and then removes knots until the

error (as measured by a least mean-squared metric) in the reconstructed signal

exceeds a tolerance. [52] uses an amplitude-threshold based method to determine
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knot locations: if the difference between a sample and the one following it by two

intervals is greater than a threshold value, it is kept as a knot for cubic spline in-

terpolation — in one variant this technique is applied only to the segment between

consecutive beats.

Splines are useful for baseline wander elimination as they provide a good repre-

sentation of this low-frequency noise with a few consistently-identified regions from

each beat. And since the noise filtering is accomplished by subtraction of the in-

terpolated spline representation from the original signal, important low-frequency

components of the ECG signal itself, like the ST segment, are not impacted. In

one of the first efforts to use splines in baseline wander elimination, [60], Meyer

et al. use cubic splines generated solely from samples of the PR segment of each

beat.

There are only a few efforts describing the use of splines for analysis of the

ECG signal. In [8], 100 milliseconds intervals prior to each R wave are searched for

a fiducial point indicated by minimizing a figure of merit based on the derivative

of the signal. These fiducial points serve as the knots for a cubic spline approxi-

mation that provides an accurate isoelectric reference for computing ST segment

deviations.

In [34], Huang et al. use a spline-based approach to detect QRS complexes in

the presence of noise. First, they compute a moving average of the original signal

for every N points. They then fit a cubic spline to the averages, replacing each

of the N points with the interpolated spline approximation. This interpolation

provides an estimate of baseline wander which they subtract from the original

signal. They then fit another cubic spline to the local maxima of the resultant

signal, and apply a threshold to the approximation to detect QRS complexes.

In [38], Kalovrektis et al. segment the QRS complex and calculates a cubic

spline representation. The coefficients defining the cubic spline for that signal

segment serve as features for a classifier trained to discriminate between normal
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sinus rhythm and several arrhythmias.

Another use of splines for analysis is described in [87], for calculating an ECG-

derived respiration signal. In this effort Shayei et al. detect R wave amplitudes

and uses a cubic spline interpolant to generate a waveform approximating the res-

piration signal. Respiration is present in the R wave amplitude due to fluctuations

in the cardiac vector as the heart is moved by the diaphragm during breathing.

Fitting a spline to the R peaks also provides a signal that is sampled uniformly in

time facilitating analysis of the respiration signal.

Summarizing the survey of spline-based methods, for applications in compres-

sion the goal is to reduce the number of knots while maintaining high fidelity

in the reconstructed signal, so the knot locations themselves are not of primary

importance.

For applications in baseline wander elimination, knot locations are predeter-

mined at particular locations of the waveform that correspond to its isoelectric

level to allow the spline approximation to approximate low frequency drift of the

signal. In these approaches the isoelectric level is determined first, then the knots

are placed correspondingly.

And the spline-based ECG analysis efforts use either interpolant coefficients

or the interpolated estimate itself. Knot locations, while important to create a

good representation of the signal, are not used in and of themselves for analysis or

estimation.

There is a long history of splines in ECG signal processing, but there is no

evidence of research into use of knot locations to determine the characteristic points

of a semiperiodic signal. Even though this concept was recognized and articulated

in 1978 by Mier-Muth and Willsky [61], it was not developed in that effort and

there is no subsequent research linking the knots used in a spline representation

to a waveform’s characteristic points until 2011 [29].

Unlike the spline-based efforts for waveform compression, analysis, and filtering,
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the algorithm for optimal ECG delineation described in this dissertation strives

to accurately place knots on a signal’s critical points, and use those points as

estimates of the characteristic points defining onset, peak, and offsets of the signal’s

component waves.

To do so it applies splines in a novel manner. The approach starts with a

parametric representation of the signal using splines defined by a predetermined

set of knots, each corresponding to a characteristic point of interest. Using a

Bayesian figure of merit, the algorithm then fuses information from the observed

signal and its parametric representation with prior knowledge of characteristic

point locations (obtained from manual annotations of training data), to determine

the optimal knot locations estimating the signal’s characteristic points.
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Chapter 3

A SPLINE FRAMEWORK FOR REPRESENTING SEMIPERIODIC SIGNALS

Before describing a method to optimally determine the locations of a semiperiodic

signal’s characteristic points in Chapter 4, this chapter presents a framework that

can be used to represent such signals with splines. It also provides the results of

an effort to assess one implementation of the spline framework on a set of ECG

signals exhibiting a wide variety of morphologies.

The framework provides a general capability for an optimal parametric rep-

resentation of semiperiodic signals, not limited to characteristic point estimation.

By proper choice of constituent algorithms the framework allows customization for

various needs including signal compression, noise elimination, and analysis.

3.1 ALGORITHM DESCRIPTION

The spline framework is illustrated in Figure 3.1. For a given input signal, it

first determines initial knot locations, then computes a representation of the signal

using those knots and the chosen spline interpolant. The optimization algorithm

modifies knot locations until an objective function, which can be a fitness function

or error criterion, is satisfied. The error value itself may be used in the optimization

process, for example, if a gradient-based method is employed.

Upon completion of the optimization process, the framework provides the opti-

mal knot locations using their constituent times and amplitudes, the interpolated

estimate of the signal computed using the optimally-placed knots, and the value

of the objective function.
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Figure 3.1: The spline framework for representing semiperiodic signals.

By allowing choice of knot initialization algorithm, type of spline interpolant,

objective function, and optimization algorithm, the framework provides great flex-

ibility to meet an application’s specific requirements. Choices of these components

can impact computational resources, speed, fidelity of the interpolated signal, and

correspondence of knot locations to a signal’s characteristic points.

Although Figure 3.1 shows knot adjustment only, in a more general implemen-

tation the optimization algorithm could consider any other parameters influencing

the model. For example, the choice of spline interpolant could potentially be con-

sidered in the optimization process for each segment of the signal under analysis.

3.1.1 Knot initialization

The number of knots required to represent a particular signal is highly dependent

on its morphology, so this step of the framework requires an adaptable, efficient

method to determine how many knots are required, and to make the initial knot

location assignments.

Using too few knots will adversely impact ability of the spline interpolant to

estimate the underlying signal, and will limit its representation of the underlying

characteristic points.
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On the other hand, using too many knots will decrease efficiency of the spline

representation and increase the computational effort required to implement the

framework. Additionally, for applications estimating characteristic point locations,

too many knots can significantly complicate determination of the correspondence

of knots to characteristic points.

For knot initialization, this effort implements a recursive partitioning algorithm

(RPA), described in [27] and [28] for a waveform compression application. RPA

belongs to the class of top down segmentation algorithms described in Section 2.3.2.

The recursive partitioning algorithm linearly interpolates between the end-

points of the signal segment and finds the point on the waveform with the greatest

error between the signal and its interpolated estimate. It then recursively applies

itself to the new line segments generated by each existing endpoint and the point

of greatest error. The recursion terminates when the maximum error between

the interpolated and original waveforms is less than an empirically determined,

application-dependent threshold selected to maintain key features of the signal

under analysis.

Figure 3.2 illustrates operation of the RPA at different stages on a sample ECG

complex extracted from the European ST-T database (EDB) [25]. Figure 3.2a fol-

lows the second partition. The next largest difference between the interpolated and

original waveforms is the onset of the R wave, which is picked for the third parti-

tion in Figure 3.2b. The final result is shown for a threshold value of 0.1 millivolt

in Figure 3.2c. Lowering the threshold further would have resulted in partitions

at approximately 0.3 and 0.5 seconds.

The apparently-unnecessary knots identified by the RPA on the steep ascend-

ing and descending segments of the R wave are due to the morphology of the

signal in those regions, where it is a very steep sigmoid with large amplitude. As a

result differences between the signal and its linearly-interpolated estimate are rel-

atively great at the points of highest curvature on the sigmoid, which necessitates
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additional knots to meet the desired amplitude threshold.
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(a) After second partition. There are four
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(b) After third partition. There are five

knots, with RMSE of 133 µV.
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(c) After the final partition achieving the

0.1 mV threshold. There are 14 knots, with

RMSE of 48 µV.

Figure 3.2: Example illustrating the Recursive Partitioning Algorithm. This figure shows RPA

applied to a beat from EDB record e0406, with results after the second, third, and final partition-

ing operations. The thicker line is the original waveform; the thinner one the linearly-interpolated

estimate based on the knots, which are indicated with circular markers. Knots determined in

this manner are used as initial locations for the optimization algorithm.
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With proper choice of threshold, RPA results in initial knot locations that serve

as a good starting point for subsequent optimization.

3.1.2 Spline interpolant

The interpolant choice is very important to ensure the goals of a given application

of the spline framework are met. For accurate signal reproduction, for example, in

applications like waveform compression, a reasonable, but not perfect, criterion is

the root mean square error between the interpolated approximation and the orig-

inal waveform. Due to the large magnitude and steep slope of the QRS complex,

small errors in representing the signal in this region can result in values of RMSE

that are disproportional to the clinical importance of this region of the ECG sig-

nal. In contrast, errors in the smaller component waves (P and T) and important

signal segments (such as the ST segment) produce a much smaller RMSE but are

clinically more important.

Also, knots optimized using spline interpolants with the RMSE criterion may

not fulfill the requirements for waveform delineation, which require knots to fall

on the waveform’s characteristic points.

To illustrate the effect of interpolant choice on the estimated signal’s fidelity

and on optimized knot locations, Figure 3.3 shows results of the framework on

the same beat used in Figure 3.2. The original beat is superimposed with the

results of three different interpolants, which were chosen to explore the effects

of differentiability constraints: a linear interpolant with no constraints, a cubic

Hermite interpolant that requires the first derivative to be continuous at each knot

location, and a cubic spline interpolant that requires the second derivative to be

continuous at each knot location.

For this exercise each interpolant was run with 12 randomly initialized knots

and optimized using a genetic algorithm as described in Section 3.1.3 below.
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(a) Linear interpolant, RMSE 44.4 µV
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(b) Cubic Hermite interpolant, RMSE

23.0 µV
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(c) Cubic spline interpolant, RMSE 43.0 µV

Figure 3.3: A comparison of linear, cubic Hermite, and cubic spline interpolants. Each plot

shows optimized knot locations, interpolated signal estimates, and the RMSE for the indicated

interpolant on a beat from EDB record e0406.

From Figure 3.3 it is clear that with a sufficient number of knots the linear,

cubic Hermite, and cubic spline interpolants all can represent the signal effectively.

As measured by RMSE, the spline interpolant’s estimate of the underlying signal

is worst for the linear interpolant with an RMSE of 44.4 µV, followed by the cubic
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spline and cubic Hermite interpolants, with RMSE values of 43.0 µV and 23.0 µV,

respectively.

The large error in the linear interpolant shown in Figure 3.3a is due primarily

to amplitude differences between the spline representation and the original in areas

of high slope around the QRS complex, especially on the ascending branch of the

wave. The signal in these areas is sigmoidal with large amplitude, resulting in

greater differences at regions of high curvature in the sigmoid.

The ability to inherently represent curvature that is provided by the cubic

spline interpolant of Figure 3.3b reduces its error in the QRS complex. However,

the limited number of knots, coupled with its differentiability constraints, cause

this interpolant to not accurately reflect the shape of the signal for the P and

T waves.

Figure 3.3 also shows that if the framework is to be used for estimating the

signal’s characteristic points, RMSE is not the only criterion to consider: knot lo-

cations following optimization should ideally reflect locations of the signal’s char-

acteristic points. With a linear interpolant the optimization process moved knots

to locations providing good estimates of the characteristic points for component

waves of the complex. As seen in Figure 3.3a a subset of the knots are positioned

very well with respect to these points and correspond to the onsets, peaks, and

offsets of the P, QRS, and T waves.

The second-order differentiability constraint imposed by the cubic spline, and

the first-order differentiability constraint for the cubic Hermite interpolant resulted

in the optimization algorithm to move some of the knots away from the desired

characteristic point locations. Specifically, the cubic Hermite interpolant in Fig-

ure 3.3b does not have a knot on the P wave offset, and its T wave peak is slightly

off. To a lesser degree, the knot representing the onset of the QRS complex is too

far to the left.

The errors in knot locations for the cubic spline interpolant shown in Figure 3.3c
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are more numerous. There is no knot corresponding to the P wave onset, and

although there is a knot between the end of the P wave and start of the QRS

complex, it does not fall on the P wave offset or QRS onset so both of these points

are impacted. In addition, there is no knot on the T wave peak.

3.1.3 Optimization algorithm

In the space defined by all possible knot locations, the optimization algorithm

must determine the location that results in the best fitness function. The effort

described in this chapter assumed no constraints on knot locations, and performed

the optimization using a genetic algorithm.

Genetic algorithms (GA) are a search technique inspired by natural selection

that iteratively evaluate randomly modified permutations of potential solutions

to discover the best one, as determined by a fitness function. Benefits of genetic

algorithms include that they are relatively easy to implement, and that they do not

use the gradient of the fitness function which for this application can be difficult

to determine. However, there is no guarantee that they will find a global optimum

and they are computationally expensive.

At a high level, the GA approach represents the inputs subject to optimization

as a population of individuals encoded as chromosomes, which are then modified

and evaluated in iterations called generations. In this application an individual is

a set of knots parameterizing the spline to be evaluated for fitness, and is described

by a chromosome comprising the knot locations.

The modification process creates new individuals by mutating existing individ-

uals and randomly combining elements from different members of the population.

Copies of the most fit individuals are propagated based on the fitness criteria

[22]. The following steps outline the GA functionality used by the optimization

algorithm:

1. The initialization algorithm creates the initial population by determining the
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starting knot locations using RPA, and augmenting the RPA output with a

set of randomly-perturbed versions. It provides a pool of 25 individuals defin-

ing the population and capturing potential knot locations to be evaluated.

2. Next, the algorithm determines the fitness of each individual in the entire

population by computing the RMSE between the original signal and its esti-

mate obtained with the desired spline interpolant parameterized by each set

of knots created in step (1).

3. The selection process then chooses two parents from the current population

using a fitness-proportional selection criterion, also known as roulette wheel

selection. In this method the probability of choosing a parent is directly

proportional to its fitness, much like a roulette wheel with non-uniformly

sized sections. The fitness-proportional process provides all individuals a

chance to be selected for propagation, but gives a greater probability to

those that are more fit.

4. The algorithm next performs a single-point crossover operation on the se-

lected parents in an attempt to develop an offspring that is more fit than

either of the parents. To do so it selects a random point, and switches the

contents of the two parent’s chromosomes following that point.

5. To maintain diversity in the genetic pool of potential solutions between gen-

erations, the algorithm next performs a mutation on the chromosomes. It

randomly selects a knot, then randomly perturbs its location in a constrained

region around its current location, i.e., bounded by its neighboring knots.

6. The next step augments the population with the best offspring. Replacing

the individual in the population having the worst fitness with the best off-

spring from step (5) results in an improvement to the overall fitness of the

population.
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7. The algorithm repeats the process starting with step (2) for 500 generations

to evaluate a sufficient number of possibilities. This value was determined

empirically by observing, over numerous tests, how many generations were

required before little or no benefit was seen in the fitness function.

At the end of the process the individual with the best fitness function represents

the best knot locations describing the signal with the specified interpolant.

3.2 ALGORITHM ASSESSMENT

To help further understand the limitations and advantages of this implementation

of the framework it was tested on a larger number of ECG waveforms extracted

from the EDB. Selected waveforms were chosen to demonstrate the algorithm’s

ability to adapt to a wide range of pathological morphologies including fusion

beats, ST segment deviation, T wave deviation and inversion, and premature ven-

tricular contraction. The signals produced by these pathologies are generally more

challenging for automated techniques than those from healthy subjects, often hav-

ing more peaks and greater variability in their features.

The EDB provides ECG data collected using two leads (i.e., electrode place-

ments) on each subject. It also provides a set of “truth” annotators indicating the

location of each beat in the signal, using the precise location of its R wave peak.

Using these annotators, ECG signals were extracted from both available channels

for several subjects prior to exercising the framework. To ensure that the ability of

the algorithm to represent P and T waves was tested, the length of the extracted

patterns was long enough to include these component waves.

Recursive partitioning, used with beat-dependent thresholds of approximately

100 µV, determined the number of knots required for each beat and their initial

locations. The genetic algorithm described above then optimized their location in

different runs using linear, cubic Hermite, and cubic spline interpolants. Each run,
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independent of interpolant used, was started with the knots in the initial locations

determined by RPA for each beat.

RPA provides a good initial estimate of knot locations prior to optimization,

but the choice of threshold is very important: smaller values will result in a more

sensitive algorithm which will be likely to identify undesired artifact as initial knot

locations. And larger values may miss required features, adversely impacting the

algorithm’s ability to represent the signal accurately.

Figure 3.4b illustrates a good compromise for a waveform with a large amount

of line noise which is seen as oscillations on the baseline of the signal. Smaller

threshold values for this example resulted in all peaks and valleys being being

selected as knot locations. With proper threshold and RMSE criterion, the inter-

polated result effectively reduces the line noise while still maintaining the ability to

represent characteristic points by the knots and the signal using the interpolated

estimate.

3.3 RESULTS AND DISCUSSION

Table 3.1 shows the aggregate error statistics for each beat across for all inter-

polants used in the evaluation. For each beat it shows the number of knots used in

the spline representation and the RMSE values between the original waveform and

its spline estimate for several interpolants. These include RMSE for the original

non-optimized knot locations determined by RPA, and knots optimized using lin-

ear, cubic Hermite, and cubic spline interpolants. The final row reports the mean

and standard deviation of the RMSE values for each method.

RMSE values for the cubic Hermite interpolant are superior to those using linear

and cubic spline interpolants for all but two cases in which the linear interpolant

is better. This experience with the cubic Hermite interpolant is consistent with

[1], in which Hermite basis functions are used to model the ECG signal.

The mean RMSE across all beats for the non-optimized initial knots produced
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Table 3.1: Spline framework results for linear, cubic Hermite, and cubic spline

interpolants on beats from both leads of several subjects in the EDB. nk is the

number of knots determined by the RPA using a threshold appropriate to each

beat (≈ 100 µV). The RMSE for the initial (pre-optimized) knots determined by

RPA is given by e1. The RMSE for optimized knots using a linear interpolant is

given by e2, using the cubic Hermite interpolant by e3, and using the cubic spline

interpolant by e4. All RMSE values are in µV.

Record Lead nk e1 e2 e3 e4

e0114
MLIII 16 20.4 14.4 14.4 18.0

V4 18 19.0 14.2 12.1 17.6

e0116
V4 11 57.2 44.1 42.2 139.4

MLIII 9 30.8 21.7 22.4 39.1

e0123
V4 23 20.7 16.7 9.7 14.8

MLIII 14 13.3 11.1 13.1 22.7

e0161
V4 22 17.0 12.8 7.9 9.1

MLIII 15 18.5 11.7 9.0 12.0

e0206
V5 19 29.9 25.8 23.7 40.1

MLI 14 23.7 16.7 14.6 25.9

e0413
V2 13 36.3 32.7 17.7 144.5

V5 11 41.0 37.0 27.9 150.4

µ ± σ (µV) 27.3 ± 12.6 21.6 ± 11.0 17.9 ± 9.9 52.8 ± 56.3
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by RPA, using a linear interpolant, is 27.3 µV. Optimizing these locations with

a linear interpolant improves the RMSE to 21.6 µV. As with the beat shown in

Figure 3.3, optimization using the cubic Hermite interpolant results in the high-

est fidelity representation, with a mean RMSE of 17.9 µV. Unlike that example,

however, optimizing using the cubic spline interpolant resulted in a significantly

greater mean RMSE than the linear interpolant, at 52.8 µV.

Comparing figures illustrating the results of these interpolants provides an ex-

planation of this effect. By using the RMSE as the optimization criterion, the

algorithm will usually favor moving knots to areas of greatest curvature and slope

because these locations generally have the biggest impact on this measure of error.

For the linear and cubic Hermite interpolants, limited differentiability constraints

allow the interpolant to represent the remaining signal accurately, especially when

fewer knots are available to cover areas of lower curvature in the waveform.

With the cubic spline interpolant, however, the second order differentiability

constraint precludes it from accurately representing relatively linear regions if there

are not a sufficient number of knots remaining after addressing the areas of high

slope or curvature in the signal.

The RPA initialization algorithm required relatively few knots for the wave-

forms of EDB record e0116. Interpolated estimates after optimization with the

linear and cubic Hermite interpolants, as illustrated in Figures 3.4b and 3.5b, show

a sufficient number of them located to accurately represent areas of high curvature

and slope, in particular the QRS complexes and the severely elevated ST segment

of the bottom complex. Fewer knots are required to represent the flatter areas of

these waveforms, and these interpolants provide an estimate that is very close to

the original signal in these regions.

There are approximately the same number of knots per signal segment for this

record in the optimization using the cubic spline interpolant shown in Figure 3.6b.

In this case, however, the interpolant’s ability to accurately represent areas of low
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slope with only two or three knots is limited. This is especially evident on the top

waveform, which has a large sinusoidal interpolated estimate for a linear segment.

The long, flat, elevated ST segment of the bottom waveform required three knots to

limit the error in that region, which left only three to represent the QRS complex.

As a result the interpolant has large error in that region as well.

The waveforms for EDB record e0413 demonstrate a very similar result. Again,

RPA required relatively few knots and the allocation of knots per segment after

optimization is similar for all three interpolants. However, while the linear and

cubic Hermite interpolants shown in Figures 3.4f and 3.5f represent the remaining

parts of the signal quite accurately, the cubic spline in Figure 3.6f again results in

a large sinusoidal estimate for the flat parts of both waveforms. In addition, its

ability to represent the T wave of the bottom waveform is significantly impacted

as well.

3.4 SUMMARY

This chapter presents a novel spline-based framework for parametrically represent-

ing semiperiodic waveforms in a highly flexible manner. Like any framework, this

one provides a high-level construct that separates out key functionality into various

components, each of which can be selected or modified to achieve specific goals. A

key advantage of the framework is its incorporation of an optimization component,

building in the capability to obtain an optimal representation of some feature of

the signal under analysis.

In contrast, previous approaches using splines are much more specific than

the spline framework presented in this chapter. Each published method described

in Section 2.7 targets a specific usage such as waveform compression, baseline

noise elimination, or signal analysis. The choices of knot initialization and type of

interpolant are selected to satisfy the problem being addressed.

The implementation of the framework described in this chapter was intended
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to explore its application to ECG signals and to understand the tradeoffs inherent

in the framework for various choices of its constituent algorithms. These include

a knot initialization algorithm, error criterion, interpolant, and optimization algo-

rithm; choice of each allows tailoring the framework for a given application.

In applications requiring high-fidelity representation of the signal itself (e.g., for

data compression applications), the cubic Hermite interpolant is preferable since it

represents the signal more accurately as measured by RMSE. Although it is possible

to decrease the RMSE of the cubic spline interpolant for the problematic waveforms

described above, those cases will require more knots, reducing the efficiency of the

spline representation.

For waveform delineation applications in which the goal is to precisely de-

termine the locations of the signal’s characteristic points, the interpolant should

produce the best RMSE when optimization locates the knots at the signal’s charac-

teristic points. As observed on the few beats evaluated in this effort, the linear and

cubic Hermite interpolants behave very similarly. However there are several cases

where the linear interpolant performed better in this regard, and it is computation-

ally much simpler. For this reason, the linear interpolant is used for the optimal

characteristic point estimation algorithm that will be described in Chapter 4.

Results from a small but diverse set of beats indicate that the spline framework

is a viable, complementary option to existing methods for parametric modeling of

the ECG waveform. And with appropriate choices of knot initialization, inter-

polant, optimization algorithm, and objective function, can be used to efficiently

represent signals with high fidelity or to estimate locations of the waveform’s char-

acteristic points.
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Figure 3.4: Results of optimization with a linear interpolant. All amplitudes are in mV. Two

leads are shown for each beat, details in Table 3.1. The thicker line is the signal and the thinner

one is the interpolated estimate. Circular markers indicate optimized knot locations.
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Figure 3.5: Results of optimization with a cubic Hermite interpolant. All amplitudes are in mV.

Two leads are shown for each beat, details in Table 3.1. The thicker line is the signal and the

thinner one is the interpolated estimate. Circular markers indicate optimized knot locations.
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Figure 3.6: Results of optimization with a cubic spline interpolant. All amplitudes are in mV.

Two leads are shown for each beat, details in Table 3.1. The thicker line is the signal and the

thinner one is the interpolated estimate. Circular markers indicate optimized knot locations.
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Chapter 4

OPTIMIZED CHARACTERISTIC POINT ESTIMATION FOR

SEMIPERIODIC SIGNALS

This chapter builds on the work described in Chapter 3 by creating an instance

of the generic spline framework to determine the location of a pre-defined set of

characteristic points using Bayesian optimization. The algorithm described here is

a refined and improved version of the one described in [30]. As before, the example

signal used here is the electrocardiogram, although the approach can be applied

to any semiperiodic signal requiring precise location of characteristic points on a

cycle-by-cycle basis.

Previously it was shown that the spline framework illustrated in Figure 3.1

provides a general algorithmic approach that is highly customizable to represent

semiperiodic signals based on knot locations and an interpolant. The knots serve

as constraint points to the interpolant which generates an approximation to the

underlying signal.

Use of the framework requires specification of a knot initialization algorithm,

an interpolant function, an objective function (which could be a figure of merit

or error criterion), and an optimization algorithm. The initial knot locations are

iteratively modified by the optimization algorithm to determine the locations re-

sulting in the best figure of merit for a given interpolant. The choices that define

an implementation of the framework are very important and depend on the goals

of the application. For example, it was shown in Chapter 3 that knot locations of

a linear interpolant can effectively identify a waveform’s characteristic points after

optimization, even though that interpolant’s ability to accurately represent the
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signal as measured by RMSE is generally inferior to a cubic Hermite interpolant.

The previous effort initializes knots using a recursive partitioning of the wave-

form and optimizes their positions using the RMSE between the observed signal

and its interpolated approximation as its objective function. Recursive partition-

ing is highly dependent on QRS complex morphology and results in a variable

number of knots. This makes it very difficult to maintain correspondence between

the knots and specific ECG characteristic points, a limitation that necessitates

post-processing to map knots back to characteristic points after their locations

have been determined.

Furthermore, using RMSE as the sole error criterion provides an overall mea-

sure of error between the signal and its interpolated estimate, while neglecting

information present in the times and amplitudes of knots describing the waveform.

The implementation of the framework described in this chapter addresses some

of the shortcomings of the previous approach as they pertain to accurately deter-

mining a signal’s characteristic points. It does not address applications requiring

accurate, compact representation of the signal itself.

The algorithm described in this chapter uses a Bayesian figure of merit to

fuse information provided by each cycle of the semiperiodic waveform with prior

knowledge derived from a separate training data set, in order to determine the best

knot locations corresponding to a fixed number of the waveform’s characteristic

points.

The intent of this work is to demonstrate an effective algorithm for analyz-

ing ECG signals in order to better understand and characterize changes to the

waveform in long recordings. This approach enables a more thorough exploration

of ECG signal morphology, especially on extremely large data sets where manual

annotation of multiple points for all beats is not feasible. Researchers can specify

points of interest, possibly differing from those described here, and quantify prior

knowledge for those points by manually annotating a representative sample of their
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data. The algorithm can then automatically analyze a very large number of beats

and determine the best locations for the desired points.

4.1 SPLINE FRAMEWORK CONFIGURATION

To maintain correspondence of knots to the characteristic points of the underlying

ECG waveform, this effort uses a fixed number of knots with constrained relative

locations determined by the desired characteristic points. This facilitates finding

and tracking specific points defining waveform onset and offset times, peaks, in-

tervals, segments, and other locations that may be of interest in tracking subtle

changes to the waveform over time. A number of these measures are illustrated in

Figure 1.4.

The algorithm implements the spline framework described in Chapter 3 with

the following customizations:

Interpolant: the algorithm uses a linear interpolant to estimate the signal, due

to its computational simplicity and desirable properties in locating the wave-

form’s characteristic points at boundaries of signal segments in the spline

representation.

Knot initialization: knots are initially placed on the waveform at the mean

time values of the a priori probabilities of the corresponding characteristic

points (frequently shortened to simply “priors”), which are determined from

manual annotations on the training data.

Figure of merit: to find the best knot location during optimization iterations,

the algorithm implements the maximum a posteriori probability (MAP) of a

Bayesian estimator. The MAP fuses goodness of fit of the interpolated signal

estimate with a priori probabilities of characteristic points determined from

a manually-annotated training data set.
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Optimization algorithm: knot locations are optimized using the cyclic coor-

dinate method. Each knot representing the waveform is successively swept

through all locations between its immediate neighbors, which are kept fixed.

The location with the best figure of merit is kept as the optimal location.

This process is repeated several times in succession for all knots to help

ensure convergence to the best figure of merit.

4.2 CHARACTERISTIC POINTS AND SUPPORT POINTS

One of the key differences between this effort and the one described in Chap-

ter 3 is use of a fixed number of knots in the spline representation, each of which

corresponds to one of the characteristic points modeled with prior knowledge of

waveform morphology.

4.2.1 Characteristic points

The algorithm estimates locations of characteristic points chosen to describe the

waves comprising a QRS complex. Knowledge of the location of the onsets, positive

peaks (maxima), negative peaks (minima), and offsets of component waveforms

allows calculation of the clinically-important intervals, durations, and segments

shown in Figure 1.4, among numerous other possibilities.

An independent beat detection algorithm run on the ECG signal identifies the

precise location of R wave peak, subsequently designated as Rp, prior to optimiza-

tion. As such it is excluded from the following list of characteristic points whose

locations are estimated by the algorithm:

Po — onset of the P wave as the signal increases from its isoelectric level.

Pp — the peak value of the P wave.

Pf — offset of the P wave as the signal returns to its isoelectric level.
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Qo — onset of the QRS complex.

Qp — the negative peak of the Q wave, which is not always present.

Sp — the negative peak of the S wave, which is not always present.

R′

p — the typically small peak of the R′ wave, which is not always present.

Sf — offset of the QRS complex.

To — onset of the T wave, which is often not discernible.

Tp — the peak value of the T wave.

Tf — offset of the T wave as the signal returns to its isoelectric level.

The entire time-ordered set of characteristic points is defined by

C = {Po, Pp, Pf , Qo, Qp, Sp, R
′

p, Sf , To, Tp, Tf} (4.1)

All knots k are completely defined by their times and amplitudes on the observed

waveform. The knots used to represent the characteristic points and to estimate

their locations are specified as

ki = (ti, ai), where i ∈ C (4.2)

Figure 4.1 shows a set of manually-annotated points on a representative wave-

form from the training set. It includes all of the points defined in C, from left to

right in the order presented above.

There are a number of ways possible to specify knot times and amplitudes. In

the most general sense they can be specified in an absolute manner with respect

to a global standard, or relative to a local reference value.

Because the optimization process is performed on a beat-by-beat basis the val-

ues ti need only to be capable of representing knot times within the beat undergoing
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Figure 4.1: A representative beat from the training data set annotated with locations of Rp and

manual annotations for all of the characteristic points in C. Times and amplitudes of all points

are represented using Equation 4.3.

analysis; there is no need for them to represent times in a more absolute manner

that can span multiple beats.

The ECG monitor used to collect the signal provides amplitude values in ab-

solute terms, typically reported in millivolts. The absolute amplitudes of ECG

waveform features can be affected by a number of factors even though the wave-

form morphologies are similar. These factors include inter-subject variability, slight

differences in electrode position, intra-subject variability due to changes in health

state, and stress level. There is even possibility of beat-to-beat changes due to

breathing, as motion of the diaphragm during inspiration and expiration can cause

the heart to tilt, changing the cardiac axis and modulating the amplitude of the
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QRS complex as seen on the surface ECG. Using the absolute amplitude of the

waveform’s characteristic points can therefore result in higher variance in estimates

of the a priori probability density.

These arguments imply that both time and amplitude values should be repre-

sented relative to a reference point local to each beat. This reference is the R wave

peak because it is generally the most prominent feature of the ECG waveform and

defines the location of each complex within the entire signal. R wave locations are

found by the beat detection algorithm which is run prior to optimization.

Letting Rp represent the characteristic point for the R wave peak of the beat

under analysis, y the observed signal, and t′ the time in the absolute reference

frame,1 relative times for that beat are defined as an offset from the time of the

R wave peak, and amplitudes are normalized relative to the R wave peak’s ampli-

tude. So the ti and ai used to define each knot ki in Equation 4.2 are defined as

ti = t′i − t′Rp
(4.3a)

ai =
y(t′i)

y(t′Rp
)

(4.3b)

To depict the variability possible in healthy subjects, Figure 4.2 shows a super-

imposed display of 200 beats from the training set, aligned in time on the location

of the R wave peak. In Figure 4.2a, the amplitude scale is in millivolts, while

in Figure 4.2b, values are normalized using the amplitude of the R wave peak as

defined by Equation 4.3b.

Table 4.1 shows amplitude statistics for several waves in each beat, computed

across 200 beats of the training data. Statistics with subscript y use unnormalized

amplitudes, and were calculated using the values of y(ti) for i ∈ {Pp, Qp, Sp, Tp}.

Statistics with subscript a used normalized amplitudes as defined by Equation 4.3.

1In this case, the absolute reference frame is with respect to the data collection process. So
the amplitudes of y are in millivolts, and times are the sequential sample number as the data
are digitized. Absolute times could be with respect to the start of a buffer previously extracted
for offline processing, or with respect to the start of data collection in a scenario performing
real-time analysis.
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Figure 4.2: An illustration of variability in ECG waveforms. Overlaid plots of 200 beats from the

training set, aligned on time of each beat’s R wave peak. Amplitude values of the plots in (a)

are in millivolts as captured by the ECG monitor. Those of the plots in (b) are normalized by

the amplitude of each beat’s R wave as defined in Equation 4.3b.

Although there is little difference between mean amplitude values µy and µa, the

standard deviations of the S and T peaks, Sp and Tp are smaller for the normalized

data. This reflects a correlation between the strength of cardiac depolarization

captured by the R and S wave peaks, and the corresponding repolarization captured

by the T wave peak. The reduction in variance from the normalization allows the

priors to provide a more effective contribution to the figure of merit.

4.2.2 Support points

In estimating the ECG signal with a linear interpolant, as is necessary for the knot

location optimization algorithm, areas of high curvature between characteristic

points in C will have a large error which can adversely affect the optimization

algorithm. Adding a number of “support” points to complement the characteristic
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Table 4.1: Means and standard deviations of ECG waveform amplitudes for several

waves, obtained using 200 beats from the training set. µy and σy are the statis-

tics for the unnormalized data, expressed in millivolts. µa and σa are for data

normalized using the R wave amplitude of each beat.

C µy σy µa σa

Pp 0.05 0.07 0.05 0.06

Qp -0.06 0.07 -0.05 0.05

Sp -0.27 0.26 -0.24 0.17

Tp 0.17 0.16 0.14 0.09

points around the peaks of the P, R, and T waves in C allows the linear estimate

to more accurately represent the signal in these regions. These points are:

P1 — support between P wave onset and its peak.

P2 — support between P wave peak and its offset.

QR
1 , QR

2 — two supports between Q wave peak and R wave peak.

RS
1 , RS

2 — two supports between R wave peak and S wave peak.

T1 — support between T wave onset and its peak.

T2 — support between T wave peak and its offset.

The entire time-ordered set of support knots is defined by

S = {P1, P2, Q
R
1 , QR

2 , RS
1 , RS

2 , T1, T2} (4.4)

As with knots in C, those in S are also completely specified by their times and

amplitudes. For the case of support knots, however, the values of ti and ai are
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calculated using the normalized times and amplitudes of surrounding knots from

C, as will be described below.

To help explain the motivation for support knots, Figure 4.3 compares the

original signal of a P wave extracted from a beat in the test set against linear

estimates created with, and without, the use of support knots. The interpolation

in Figure 4.3a relies only on the manually-annotated onset, peak, and offset char-

acteristic points drawn from C, i.e., {Po, PP , Pf}. This linear interpolant clearly

has a limited capability to represent the signal in areas of high curvature around

the peak.
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(a) P wave and its linear estimate without

support knots, RMSE 62 µV.
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(b) P wave and its linear estimate with sup-

port knots, RMSE 30 µV.

Figure 4.3: A comparison of linearly-interpolated estimates of a P wave with and without support

knots. Figure (a) illustrates the estimate using only the characteristic point knots Po, Pp, and

Pf drawn from C, all of which are indicated with filled circles. Figure (b) adds the P1 and P2

support knots from S which are indicated with smaller unfilled circles. Use of support knots

results in a linear estimate more closely approximating the underlying signal.

Figure 4.3b shows the same P wave and manually-annotated characteristic

points from C, but also introduces two additional knots: The P1 support between
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the onset and peak, and the P2 support between the peak and offset. The lin-

ear interpolant using these additional knots represents the underlying signal more

closely, with a much smaller RMSE. As previously noted, sole use of RMSE will

not determine the best characteristic point locations. However, it does play an

important role in the figure of merit that will be described in Section 4.3, which

incorporates error in the spline representation as well as prior knowledge to de-

termine optimal location estimates. If the error in the linear spline estimate is

too large, the optimization algorithm will favor this term disproportionally to the

priors, resulting in poor knot placement.

Figure 4.4 illustrates the same concept for a T wave extracted from another

beat in the test set, in this case with the T1 and T2 support knots. As with the

P wave, incorporating the support knots improves the linear estimate of the signal

and results in a smaller RMSE.

Because the P and T waves are not very large in amplitude, one support knot

on each side of the peak is sufficient for the linear interpolant to represent the

underlying waveform for the optimization process. P and T waves exhibit a wide

variety of morphologies, including peaks that are symmetric, asymmetric, sharp,

rounded, and “notched”. To minimally bias the location of the support knots and

allow them to support a variety of morphologies, they are defined as the amplitude

midpoints between onsets, peaks, and offsets.

Specifically the amplitude midpoints between the onsets and peaks of the P and

T waves define the P1 and T1 support knots. And similarly, the amplitude mid-

points between the peaks and offsets define the P2 and T2 support knots. These

are the locations illustrated with the open circles indicating support knots in Fig-

ures 4.3 and 4.4.

Figure 4.5 shows a QRS complex extracted from the test set, and its corre-

sponding linear estimates with and without support knots. Note the amplitude

scale for the QRS complex is much larger than that of the P and T waves. The



www.manaraa.com

89

0.18 0.2 0.22 0.24 0.26 0.28
−0.05

0

0.05

0.1

0.15
N

or
m

al
iz

ed
 A

m
pl

itu
de

Relative time (s)

(a) T wave and its linear estimate without

support knots, RMSE 9 µV.
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(b) T wave and its linear estimate with sup-

port knots, RMSE 5 µV.

Figure 4.4: A comparison of linearly-interpolated estimates of a T wave with and without support

knots. Figure (a) illustrates the estimate using only the characteristic point knots To, Tp, and Tf

drawn from C, all of which are shown using filled circles. Figure (b) adds the T1 and T2 support

knots from S which are shown using smaller unfilled circles. Use of support knots results in a

linear estimate more closely approximating the underlying signal.

ascending (QR slope) and descending (RS slope) segments of the QRS complex are

very steep and tall sigmoid shapes with points of inflection approximately midway

between the R wave peak and the Q and S peaks.

As with the P and T wave peaks described above, a linear interpolation using

only knots from the characteristic point set C will have a large error, as seen in

Figure 4.5a. In this case, however, since the QRS complex is much larger than the

P or T waves, two support knots are required on each side of the peak. Use of

only one knot at the midpoint of amplitudes as was done with the P and T waves

would result in the support knots falling close to the points of inflection of the

signal. The points of inflection are very close to where the linear estimate crosses

the waveform in Figure 4.5a, so adding support knots at these locations would not

significantly improve the linear estimate (i.e., the resulting estimate would be very
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(a) QRS complex and its linear estimate

without support knots, RMSE 168 µV.
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(b) QRS complex and its linear estimate

with support knots, RMSE 55 µV.

Figure 4.5: A comparison of linearly-interpolated estimates of a QRS complex with and without

support knots. Figure (a) illustrates the estimate using only Rp and the characteristic point knots

Qp and Sp drawn from C, all of which are shown using filled circles. Figure (b) adds support knots

from S to improve the linear estimate. These include two knots, QR
1

and QR
2

on the ascending

limb of the complex, and two knots, RS
1

and RS
2

on the descending limb. Support knots from S

are shown using smaller unfilled circles.

close to that obtained without supports shown in Figure 4.5a).

To improve the linear estimate, the locations for these four knots should be

at the points of maximum curvature surrounding the points of inflection of the

sigmoids. A computationally simple, yet effective, approximation can be obtained

by calculating two points symmetrically distant from the amplitude midpoint of

the QR slope and RS slope.

The optimization algorithm’s overall accuracy in estimating characteristic point

locations over the entire training set was used to determine the best locations for

these support knots. A comparison of accuracies with the support knots placed at

one-third and two-thirds of the amplitude range against knots placed at one-fifth

and four-fifths of the range resulted in slightly higher accuracies for the latter. So
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Figure 4.6: A representative beat from the training data set annotated with locations of all knots

defined by K. This set includes Rp and all characteristic points in C indicated with filled circles,

and support knots in S indicated with open circles.

the results on the test set that will be presented in Section 4.8, as well as the

support knots shown in Figure 4.5b are at the one-fifth and four-fifth locations.

The entire set of knots, K, is defined as the time-ordered union of all char-

acteristic point knots, support knots, and the R wave peak (which is represented

separately since it is determined by the QRS detector prior to optimization). This

complete set provides the basis for spline interpolation by the framework:

K = C ∪ S ∪ Rp (4.5)

Figure 4.6 shows the same waveform as Figure 4.1, but also includes the support

knots calculated as described above.
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4.2.3 Motivation for support knots

This section provides a qualitative view of the importance of support knots in

the optimization, and gives a representative example to illustrate their benefit.

The underlying concepts will be fully described in Section 4.3, which formalizes

the terminology and derives the Bayesian figure of merit used by the optimization

algorithm.

Fundamentally, the Bayesian approach fuses prior knowledge with an observa-

tion, in this case to create a figure of merit enabling optimal parameter estimation.

The contribution of the observed signal, known as the likelihood, is determined by

how well the model governed by the parameters represents the signal. In this case,

the parameters are the knots in set K and the model is the linear interpolant.

Although the interplay of the priors and likelihood is critical to Bayesian op-

timization, if the error between the model’s representation and the observation is

sufficiently large, the optimization will be increasingly biased against the priors

and favor parameters that improve the likelihood instead of the optimal character-

istic point locations. This can cause the knot estimates to move off of their desired

locations during optimization.

All of the support knots identified in S serve to reduce this bias. By improving

the model’s ability to represent the signal in key areas of the waveform that exhibit

high curvature, the effect described above is mitigated.

To illustrate how the support knots serve this purpose, Figure 4.7 uses the same

P wave signal used in Figure 4.3, which is repeated in the top two figures. The

lower two figures, however, show an alternate peak location for the P wave which

is indicated by the square marker.

Because the optimization process (to be described in Section 4.7) evaluates

the figure of merit for every point in the region between the knots immediately

neighboring the knot whose location is being optimized, the location indicated by

the square marker will be evaluated as a potential location for the P wave peak.
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(a) P wave with a knot on the correct

peak, and its linear estimate without

support knots, RMSE 62 µV.
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(b) P wave with a knot on the correct

peak,and its linear estimate with sup-

port knots, RMSE 30 µV.
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(c) P wave with a knot on an incorrect

peak, and its linear estimate without

support knots, RMSE 60 µV.
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(d) P wave with a knot on an incorrect

peak and its linear estimate with sup-

port knots, RMSE 51 µV.

Figure 4.7: A comparison of linearly-interpolated estimates of a P wave with knots at correct and

incorrect peak locations. Circles in figures (a) and (b) show knots at the correct peak location.

Square markers in figures (c) and (d) show knots at an incorrect peak location that would be

evaluated during optimization. Linear estimates in (a) and (c) were created without support

knots. Those in (b) and (d) add the P1 and P2 support knots, as indicated with smaller unfilled

circles. The best RMSE occurs at the correct peak location when support knots are used.
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In the case without support knots, a comparison of the error between the

linear estimate at the true peak in Figure 4.7a with that of the incorrect peak in

Figure 4.7c shows that the linear estimate is better for the incorrect peak with an

RMSE of 60 µV, compared to an RMSE of 62 µV for the correct peak.

Adding the support knots has the desired effect. Comparing the error from

the estimate using the incorrect peak location shown in Figure 4.7d to that of the

estimate using the correct peak locations in Figure 4.7b shows that the RMSE of

the estimate using the incorrect peak is greater, at 51 µV, than that of the estimate

with the correct peak, which has an RMSE of 30 µV.

By augmenting the set of knots in C with those in S, the optimization is more

likely to report the best figure of merit when knots are at their correct locations,

especially when they are in proximity of areas of high curvature in the signal.

Without these supports the likelihood component of the Bayesian optimization

can dominate the contribution of the priors, and for certain waveform segments,

cause the knots to move away from their correct locations.

4.3 FIGURE OF MERIT

The figure of merit is the criterion used by the spline framework described in Chap-

ter 3 to evaluate potential solutions during the optimization process. It is a key

component of the framework and its choice must be informed by the purpose of

each instance of the framework. In this chapter, the goal is optimal estimation

of characteristic point locations of a semiperiodic waveform, while incorporating

prior knowledge to improve accuracy. A systematic way to include the use of prior

knowledge in the estimation is an important contribution, as existing solutions do

not explicitly incorporate priors. This effort represents priors as the a priori prob-

ability density estimate of the parameters of interest, and they will be described in

Section 4.4. It will be shown here that adopting a Bayesian approach for parameter

estimation yields an elegant and effective figure of merit that incorporates prior
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knowledge, the observed signal, and the effect of model parameters in representing

the signal’s characteristic points.

The general technique of Bayesian estimation is used for classification in the

pattern recognition literature ([20], [85]), and for parametric estimation in the

statistical signal processing literature ([40]). It is predicated on modeling the

parameter of interest as a random variable with a distribution that is known a

priori. The goal of the estimation process is then to determine the realization

of that random variable resulting in the greatest posterior probability given the

observed data.

In this application the model is the linear spline representation of the signal,

the model parameters are locations of the knots representing characteristic points

C, supports S, and the R wave peak Rp. The signal under analysis is the observed

data, and priors are estimated from manual annotations on training data.

The figure of merit is the a posteriori, or posterior, probability calculated using

Bayes’ Theorem. The algorithm determines optimal knot locations by finding the

parameters that produce the maximum a posteriori probability, or MAP, value.

Details on the calculation used to obtain the MAP during the optimization process

will be provided in Section 4.6.

Letting k represent the knot locations for all characteristic points in C as defined

in Equation 4.2, and y represent the observed ECG signal, the posterior is given

by the conditional probability p(k|y). Using Bayes’ Theorem it is defined as

p(k|y) =
p(y|k)p(k)

∑

k p(y|k)p(k)
=

p(y|k)p(k)

p(y)
(4.6)

Here, p(k) is the a priori probability density of the parameters. In the general case

priors quantify uncertainty in model parameters before taking the observation into

account. For this application they fulfill this role by representing knowledge of

knot locations known before the signal is analyzed. They may be obtained from

the underlying physiology or estimated from other data sets, as was done in this
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effort.

p(y|k), also known as the likelihood, reflects the degree of belief in the observed

signal conditioned on knowledge of the model parameters. It is effectively a mea-

sure of how well the model, as defined by its current parameters, represents the

signal. The likelihood will be derived in Section 4.5.

The term in the denominator of Equation (4.6) is the probability of the ob-

servation p(y). It is independent of the parameters k being estimated and serves

only as a scaling factor to normalize the posterior probability density. As such it

does not affect the comparisons used in maximizing the figure of merit and can

be eliminated from the equation. Doing so produces a figure of merit represented

simply by the product of the likelihood and the priors

p(k|y) ∝ p(y|k)p(k) (4.7)

Maximizing this figure of merit over the vector of knots k for a given signal y

provides the best knot locations corresponding to the optimal estimates of charac-

teristic points C of the ECG complex.

Application of Bayes’ Theorem to define the a posteriori probability, and com-

putation of the MAP to determine the best knot locations, provide a systematic

way to balance the tradeoff between prior knowledge p(k), the observation y, and

parameter estimate k.

4.4 PRIOR PROBABILITIES

The algorithm uses prior knowledge captured as estimates of the a priori prob-

ability density of the characteristic points of interest in two ways. First, it uses

statistics of characteristic point locations in time to initialize knot locations prior

to the optimization. These location priors are described in Section 4.4.1.

It also uses priors as part of the optimization process. Incorporating the a priori

probabilities in the optimization biases the solution towards the prior knowledge,
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helping to reduce variability of the estimates and improve accuracy. This is par-

ticularly helpful in waveforms in which one or more points are ambiguous, there is

noise, or a particular feature is absent. In this case a more complete set of priors

serve to capture additional information regarding the waveform’s characteristic

points, and are specified by a joint probability density estimate of each point’s

time and curvature. These time-relevance priors are described in Section 4.4.4.

The a priori probability density estimates were calculated using manual anno-

tations of all characteristic points in C on a subset of the data that was used for

training, as described in Appendix B.

The training set comprises 400 randomly-selected beats from 40 randomly-

selected subjects. The first set of 200 beats was manually annotated by one re-

viewer, and the second set of 200 beats was manually annotated by two reviewers.

In total this provides up to 600 potential manual annotations of points in C, al-

though due to noise, ambiguity, and missing features in the training data there

are fewer than 600 annotations for all points. The annotated locations were pro-

cessed as described in the following sections to obtain an estimate of the a priori

probability densities for each characteristic point.

4.4.1 Location priors

This section describes statistics computed from manual annotations which are used

for initializing knot locations before invoking the optimization algorithm. These

are named location priors to distinguish them from the priors used for optimization

that are described in Section 4.4.4.

The probabilistic representation of the time and amplitude components of each

characteristic point in C models them as being normally distributed based on

the central limit theorem. This allows fully specifying the location prior of each

characteristic point by its mean and variance as obtained from manual annotations

of the training data.
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Table 4.2 shows the mean and standard deviation for the time and amplitude

components of all of the characteristic points in C, along with the number of

annotated points used in their calculation. Counts n with values of less than 600

reflect characteristic points that were not labeled by one or both reviewers.

Figure 4.8 illustrates the location priors graphically against a representative

waveform from the training data set. The rectangles are centered on the mean

time and amplitude values. Their width and height are two standard deviations

in time and amplitude, respectively, effectively bounding each prior in time with

µt ± σt, and in amplitude with µa ± σa.

Since the knot locations used to calculate the priors are specified with respect

to the R wave peak as defined by Equation (4.3), its mean time and amplitude are

exactly zero and one, respectively, and variances of both time and amplitude are

zero. For this reason its bounding box is not shown in the figure.

The characteristic points that are part of the QRS complex, Qo through Sf ,

exhibit relatively small standard deviations in time, indicating less temporal vari-

ability in the vicinity of the R wave during ventricular depolarization. In addition,

the sharp curvatures defining these features makes it easier for reviewers to place

manual annotations that are consistent with each other. However, several of these

points show large amplitude variance reflecting a wide range of amplitudes for the

corresponding characteristic point in the training set. For example, depending on

subject and lead the S wave peak may be very small, or be present with great

amplitude in what is commonly called a biphasic waveform. The Q wave and R′

peaks exhibit a similarly large amplitude variances for the same reason, although

their maximum amplitude is generally far less than that of the S wave.

Conversely, the P and T wave characteristic points have much larger variances

in the time dimension than those of the QRS complex. Because these features are

more bandlimited, it is more difficult for different reviewers to precisely and consis-

tently place the annotations since they can lack sharp demarcations. Furthermore,
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Table 4.2: Means and standard deviations of times (µt, σt) and amplitudes (µa, σa)

of characteristic points in C for the entire training set. As defined by Equation (4.3),

times are in milliseconds offset from the R wave peak and amplitudes are relative

to the R wave peak. n is the number of beats in the training set which were

manually annotated for each characteristic point. There were a total of 400 beats

in the training set; each beat was annotated by at least one of the reviewers, for a

maximum possible count of 600. Some of the characteristic points may not have

had manual annotations due to noise or lack of the corresponding characteristic

point in the ECG signal.

C µt σt µa σa n

Po -190.9 25.4 -0.01 0.03 590

Pp -141.9 21.9 0.09 0.05 596

Pf -94.8 21.1 -0.04 0.04 593

Qo -39.1 7.2 -0.04 0.03 597

Qp -30.0 3.0 -0.10 0.14 393

Sp 24.4 6.1 -0.30 0.21 585

R′

p 39.2 7.4 -0.03 0.05 363

Sf 51.2 9.0 -0.06 0.05 595

To 162.8 37.9 0.03 0.07 225

Tp 254.5 27.3 0.20 0.10 563

Tf 329.2 29.1 -0.08 0.06 536
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Figure 4.8: A representative beat from the training data set annotated with rectangles repre-

senting the location priors for characteristic points in C. These correspond to values shown in

Table 4.2. Rectangles are centered at the time and amplitude means of the joint time-amplitude

density estimates and are two standard deviations in each dimension; each rectangle is bounded

by µ ± σ in time and amplitude.

the smaller amplitudes of the P and T waves makes them more susceptible to noise,

also increasing the variance of manual annotations.

4.4.2 Augmenting manual annotations

Certain characteristic points may not have been annotated by the reviewers for

some QRS complexes in the training set, as evidenced by counts n less than 600

in Table 4.2.

These missing manual annotations fall into two classes. The first class includes
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characteristic points that are present in all waveforms but which may not be ob-

servable due to low signal amplitude for a particular subject and lead, or because

noise on the ECG signal obscures the point’s location. While the ability of a re-

viewer to annotate virtually any characteristic point can be adversely impacted

by the presence of noise and low amplitude, the annotations most affected in this

manner are the onset, peak, and offset of the P wave, and the peak and offset of

the T wave. Despite their relatively low amplitude and lack of sharp features, all

of these points have over 500 manual annotations each, and are well represented

for use as priors.

The second class of missing manual annotations is more challenging, comprising

other characteristic points that may simply not be present in the given lead for a

subject. These include the Q wave peak, R′ wave peak, and the T wave onset. The

missing peaks in this class are evidenced by lack of a pronounced local maximum

or minimum at the expected location of the waveform. A missing T wave onset is

the most common missing characteristic point with only 225 manual annotations.

It occurs when there is a highly linear transition from the end of the QRS com-

plex leading into the T wave peak. In this case there is no discernible change in

curvature corresponding to the start of the T wave that would serve to designate

an onset point.

Since the algorithm described in this chapter estimates the location of all char-

acteristic points in C, the knots corresponding to the second class of potentially-

missing characteristic points will be present and used in the interpolation and op-

timization even if the underlying features they represent are not in the waveform

being analyzed. To illustrate how missing characteristic points in the underlying

waveform affect knot location, Figure 4.9 shows two QRS complexes from the test

set on an expanded time and amplitude scale. Markers on these figures indicate

the onset and offset times of the QRS complex, and peaks of the Q wave, S wave,

and R′ wave.
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(a) QRS complex exhibiting a Q wave,

S wave, and R′ wave. From left to right,

the markers indicate the QRS onset, Q wave

peak, S wave peak, R′ wave peak, and QRS

offset.
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(b) QRS complex without S or R′ wave

peaks. In this case the optimization pro-

cess has moved the corresponding knots, in-

dicated by diamond-shaped markers, to an

appropriate location on the waveform.

Figure 4.9: An illustration of knot locations determined by the optimization algorithm for features

that may not be present in an ECG waveform. The diamond-shaped markers in (b) correspond

to the S and R′ peaks, which do not exist in that waveform and, if in the training set, would not

have been manually annotated.

The example in Figure 4.9a has distinct characteristic points corresponding

the S and R′ wave peaks indicated by the third and fourth markers. The complex

shown in Figure 4.9b, however, does not have peaks for the S or R′ waves. In this

example the corresponding knots, indicated with filled diamond-shaped markers,

have moved to an appropriate location on the waveform as determined by the figure

of merit during the optimization process.

Since the figure of merit relies on accurate priors, the locations of these char-

acteristic points must be represented in the training set even for beats that don’t

exhibit these features, and as a result, have no corresponding manual annotations.
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To address this contingency, prior to computing the prior probability density esti-

mates used for optimization, the manual annotations need to be augmented. Knots

corresponding to missing missing Q wave and R′ peaks must be placed on the as-

cending QR slope or ascending S slope respectively. And knots corresponding to

a missing T wave onset must be placed between the QRS offset and the T wave

peak.

To more closely match the the figure of merit during optimization, the point

in the segment resulting in the best likelihood value determines the locations for

these augmented knots. Performing this important step before calculating the

priors used for the optimization ensures that they reflect both the presence and

absence of the characteristic point, and as will be seen in Section 4.4.4, result in

a bimodal a priori probability density estimate for these, and in some cases their

immediately neighboring, points.

4.4.3 Knot relevance

The location priors described above reflect previous knowledge of knot location as

given by the times and corresponding amplitudes of the manually-annotated char-

acteristic points. However, additional information exists in the signal, specifically

regarding the relevance, or importance, of each knot in representing the signal with

a linear interpolant.

Some knots, such as the R wave peak, are critical to the spline representation

of the waveform because they indicate a point of great curvature reflecting an

abrupt change in the underlying physiology. Other points, such as the T wave

onset, often cannot be distinctly identified because they occur when the waveform

is nearly linear without a clear change in slope or point of high curvature.

Mathematically, the curvature of a smooth plane curve at an arbitrary point is

defined as the rate of change of the tangent to the curve at that point ([80], [37]).

Since in this implementation of the spline framework the signal is represented by
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Figure 4.10: Relevance calculation for knot ki. With typical values for the R wave peak, Rp,

Equation (4.8) results in θi1 = tan−1(0.33/0.01) = 1.54 and θi2 = tan−1(−0.23/0.006) = −1.55.

Using these in Equation (4.9) provides the relevance ρ = (1.54 + 1.55)/π = 0.98, indicating a

very sharp concave down peak, as expected for Rp.

linear segments bounded by the knots in K, the tangent to the interpolated signal

estimate is not defined at any knot joining non-collinear segments.

Noting that the slopes of the linear segments used to estimate the signal can

only change at knot locations suggests a straightforward measure of curvature.

It is a special case of the more general definition provided above and is simply

stated as the normalized angular change of the line segments surrounding the knot

under consideration. This knot relevance parameter is designated by ρ, and for

each knot ki ∈ C is calculated using the times and amplitudes of the immediately

preceding and following knots, ki−1 and ki+1. The first and last knots in C use

the signal segment’s start and end points as their preceding and following knots,

respectively. Relevance values for the start and end points are not defined — nor

are they needed — as the segment end points are not represented in C.

Figure 4.10 illustrates the relevance calculation for a typical R wave peak knot

drawn from a beat in the training set. First, it is necessary to calculate the angles



www.manaraa.com

105

of the line segments preceding and following the knot under consideration

θi1 = tan−1
ai − ai−1

ti − ti−1

(4.8a)

θi2 = tan−1
ai+1 − ai

ti+1 − ti
(4.8b)

Then ρi is obtained by computing the normalized difference of the angles

ρi =
θi1 − θi2

π
=

∆θ

π
(4.9)

The relevance value computed in this manner is bounded by −1.0 ≤ ρ ≤ 1.0. A

relevance of 0.0 corresponds to a knot on an exactly-linear segment of the waveform

where θi1 = θi2 ; a relevance approaching +1.0 indicates a knot on an extremely

abrupt, rapid transition that corresponds to a concave down, or positive, peak such

as that of an R or R′ wave. A relevance approaching −1.0 indicates a similarly

abrupt knot on a concave up, or negative, peak such as a Q or S wave. This metric

quantifies not only the shapes of peaks in the waveform, but can also provide

valuable information regarding curvatures of waveform onset and offsets.

Information about the curvature of the waveform can indicate the importance

of any knot to the waveform’s spline representation. Since the algorithm described

in this chapter optimizes the location of all knots in C, even if the underlying

characteristic point does not exist for a particular waveform, after optimization

the relevance value can be used determine whether or not the characteristic point

corresponding to a particular knot is actually present. For example, the Qp knot

for a waveform that does not have a Q wave peak will have very low relevance,

whereas for a waveform that exhibits the peak it will have a high relevance.

The more important application of the knot relevance, however, is its use as

a component of the a priori probability density estimate to help identify the best

knot locations during Bayesian optimization.

By augmenting the description of each characteristic point estimated by the

spline framework with prior knowledge of its relevance, the figure of merit oper-

ates on more information, resulting in improved knot location estimates. Table 4.3
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shows statistics of the relevance values calculated for all manually-annotated char-

acteristic points in the training set, and can be compared against Figure 4.1 which

shows manual annotations of all characteristic points C on a representative beat.

The relevance values of the knots representing peaks of the P and T waves have

mean values of 0.69 and 0.78 respectively, indicating a moderate curvature. This is

consistent with expectations for these peaks since they are usually rounded. Sharp

positive peaks such as those of the R and R′ waves have greater mean relevance

values that approach +1.0, and sharp negative peaks such as those of the Q and

S waves have mean values near −1.0. The mean relevance for onsets and offsets of

all waves are much lower than those of the peaks, indicating mild curvature.

The relevance value provides an additional benefit to characteristic points that

may not be present in a given waveform as described in Section 4.4.2. When the

peaks of the Q and R′ waves are not present, the relevance values are close to

zero since the corresponding knot locations tend to fall on signal segments that

are relatively linear, as illustrated in Figure 4.9b. For these cases, the probability

density estimate of relevance values can can be modeled with multiple modes and

provide a more complete representation of prior knowledge for the optimization.

One mode is near a relevance value of zero corresponding to missing characteristic

points, and the other mode is at the relevance value indicated by the manual

annotations.

4.4.4 Time-relevance priors

The approach described in Section 4.4.1 calculates location priors for characteristic

points using manual annotations on the training set. However, the location priors

in isolation do not incorporate the knot relevance value ρ of each characteristic

point which provides valuable a priori information about the curvature of the

points being estimated. Ideally, the prior used for optimization should incorporate

time, amplitude, and relevance information.
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Table 4.3: Means and standard deviations of knot relevance values ρ calculated

for Rp and characteristic points in C using manual annotations on the training

set. n is the number of beats in the training set for which ρ could be calculated.

The characteristic point itself, as well as required surrounding points, must all be

present.

C ∪ Rp µρ σρ n

Po -0.34 0.10 587

Pp 0.69 0.16 583

Pf -0.43 0.14 588

Qo 0.43 0.13 387

Qp -0.88 0.05 391

Rp 0.98 0.00 378

Sp -0.95 0.03 363

R′

p 0.86 0.09 358

Sf -0.56 0.12 101

To -0.18 0.09 224

Tp 0.78 0.07 219

Tf -0.47 0.13 530
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An effective estimate that captures the time, amplitude, and relevance of each

knot is the joint probability density of the knot’s time with respect to its cor-

responding R wave peak and its relevance value ρ. Incorporating the relevance

directly into a joint density avoids the more problematic approach of building the

prior in a higher dimension that would have to include the times and amplitudes

of each three-tuple of knots, since for every knot the time and amplitude of the

knots immediately preceding and following it are required to compute relevance.

The joint probability density of the prior information is therefore represented

simply as p(t, ρ) and estimated from directly from the training set using the time

and relevance values for every manually-annotated characteristic point in C.

Although a histogram provides a reasonable estimate of the underlying proba-

bility density, it lacks continuity which is desirable when employing the joint prob-

ability density estimate in the optimization process. Specifically, a small change

in time or relevance should be reflected as a commensurate change in the prior

probability, otherwise the priors may have an incorrect effect on the optimization.

One possible solution is to increase the granularity of the histogram by reducing

its bin sizes. Although this will provide increased smoothness the resulting growth

in number of bins will require much more training data. Otherwise, as the number

of bins increases the count per bin will decrease, limiting the histogram’s ability

to create a meaningful estimate of the underlying probability density.

Using a kernel density estimation (KDE) addresses this shortcoming. KDE is

a non-parametric technique that provides a smooth density estimate by summing

continuous kernel functions according to the underlying data [107]. The width of

the kernel function, called the bandwidth, determines the degree of smoothing pro-

vided by the estimator. There are a number of openly-available implementations;

this effort used the gkde2 Bivariate Kernel Density Estimator [14], which incorpo-

rates an effective automatic bandwidth selection algorithm. The resultant density

estimate provides prior values that can easily be indexed with a given knot’s time
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and relevance to calculate the figure of merit during optimization.
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(a) Po histogram. Limited granularity of

the histogram due to bin size impacts its

use for optimization.
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(b) Po KDE, reflecting the histogram but

with much greater granularity to provide a

more continuous basis for estimating values

at any given time and relevance.

Figure 4.11: Histogram and KDE estimating the joint time-relevance prior probability density

of the P wave onset characteristic point Po, obtained using using manual annotations on the

training set. t is the time of the characteristic point in seconds with respect to the R wave peak,

and ρ is its relevance.

Figure 4.11 illustrates the histogram and corresponding KDE of the P wave

onset characteristic point. The KDE for the P wave onset characteristic point in

Figure 4.11b reflects a smoothed version of the histogram in Figure 4.11a. This

characteristic point is present in all of the training data, even though it may

not be annotated for every waveform due to noise or ambiguity. The density

estimate is unimodal with peaks in both dimensions reflecting values for the Po

shown in Table 4.2 for time, and Table 4.3 for relevance: the mode in the time

dimension is approximately 200 milliseconds prior to the R wave, and the mode in

the relevance dimension is at ρ ≈ −0.3, indicating a mild curvature corresponding

to the beginning of the P wave.
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Figure 4.12: Histogram and KDE estimating the joint time-relevance prior probability density of

the Q wave peak characteristic point Qp, obtained using using manual annotations on the training

set. The bimodal nature reflects the fact that this characteristic point may not be present in some

waveforms: the peak at ρ ≈ −0.9 corresponds to sharp concave up curvature of a Q wave, while

the peak at ρ ≈ 0.05 reflects lack of this feature, with the corresponding knot on a linear part of

the QR slope.

Figure 4.12 shows the histogram and KDE of the Q wave peak. Since the

Q wave peak is one of the characteristic points that may not be present in some

waveforms, there are cases where no manual annotation can exist. For signals

in the training set where this the case the preprocessing algorithm described in

Section 4.4 adds a knot at an appropriate location following the Q wave onset,

which typically falls on a relatively linear part of the waveform.

As a result this density estimate has one mode peaking at ρ ≈ −0.9 and

indicating a very sharp concave up waveform corresponding to presence of a Q wave

peak, and another mode at ρ ≈ 0.05 corresponding to complexes in the training

set that did not have a Q wave peak and whose corresponding knot was placed on

the ascending QR slope of the complex. The relevance value of the first mode is

consistent with the mean relevance for Qp in Table 4.3; that of the second mode
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is not reflected in the table, as the statistics presented there do not incorporate

augmented points.

In time, both modes of this estimate occur at approximately 30 milliseconds

prior to the R wave peak, again consistent with the corresponding location prior

in Table 4.2. Complementing the training set of characteristic points allows the

prior to contribute properly when optimizing knot locations for potentially missing

features.

Figures showing the histograms and KDE estimates of the a priori time-relevance

probability densities for all characteristic points defined by C are shown in Ap-

pendix A.

4.5 LIKELIHOOD

The likelihood was introduced as a component of the Bayesian figure of merit in

Section 4.3, and was described qualitatively as the degree of belief in the observed

signal given the models parameters, represented as p(y|k). This value provides an

effective measure of how well the model represents the observation with its current

parameters.

To derive the likelihood, the observed signal is modeled as the sum of its spline

estimate and a noise term. The noise term represents the error between the lin-

ear interpolation and the signal, and is assumed to be an uncorrelated stochastic

process described by a zero-mean normal distribution.

With y representing the original signal, ŷ = f(k) the interpolated spline esti-

mate, and ǫ the error, the model is given by

y = ŷ + ǫ (4.10)

Solving for the error term yields

ǫ = y − ŷ (4.11)
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which is assumed to be normally distributed with zero mean and variance of σ2
ǫ ,

represented as N (0, σ2
ǫ ). Now the likelihood can be expressed as

p(y|k) = pǫ(y − ŷ|k) (4.12)

The vector of likelihoods expressed in this manner is obtained by calculating values

of the normal probability density N (0, σ2
ǫ ) for each element comprising the error

vector computed at every point of the observed signal estimated by the spline

interpolant.

The optimization process described in Section 4.7 operates in succession on

the characteristic point locations specified in C, determining each one’s optimal

location between the knots immediately preceding and following it in the full set

K. As uncorrelated, normally-distributed processes are independent, the overall

likelihood value corresponding to a set of knots is computed as the product of m

components, one for each sample of the waveform being estimated using spline

interpolation on the current three-tuple of knots. Starting with Equation (4.12),

and applying the assumption of independence,

p(y|k) = pǫ(y − ŷ|k) (4.13a)

= pǫ(ǫ1, . . . , ǫm) (4.13b)

=

m
∏

j=1

pǫ(ǫj) (4.13c)

Where j is the index indicating the location at which the error between the ob-

served signal and its interpolated estimate is calculated, and m indicates the num-

ber of samples spanned by the three-tuple of knots, the center knot of which is

being optimized. So the likelihood is given by the product of individual values of

the normal density function N (0, σ2
ǫ ) at each error value ǫj .

This value reflects how well the model, a linear interpolant governed by its

parameters ki, represents the observed signal y. The smaller the error across the

entire signal, the closer the ǫ is to zero. Since the mode of a zero-mean normal
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distribution is at zero, the cumulative probability defining the likelihood will have

its maximum value when the signal is perfectly estimated by the model.

The noise variance σ2
ǫ specifies the spread of the error distribution, which in

turn governs the “responsiveness” of the likelihood term to errors in the estimate.

Smaller values of σ2
ǫ result in a distribution with lower variance, providing a sharper

response; i.e., a change in the underlying error will cause a larger degradation of

the likelihood. Larger values of σ2
ǫ model a distribution with greater variance,

producing a smaller response in likelihood for a given change in error.

A systematic comparison of optimization accuracies on the training data de-

termined the best value of noise variance to be σ2
ǫ = 0.001. The optimization

to assess algorithm performance on the prospective test set used this value, with

results reported in Section 4.8.

4.6 CALCULATING THE POSTERIOR

As described in Section 4.3, the figure of merit used in the optimization is the

posterior probability of the parameters conditioned on the observation, defined

using Equation (4.7) as p(k|y) = p(y|k)p(k).

The optimization process determines best placement by finding the knot loca-

tions that produce the best figure of merit. Knots resulting in the maximum a

posteriori probability are expressed mathematically as

kMAP = argmax
k

p(k|y) (4.14a)

= argmax
k

p(y|k)p(k) (4.14b)

Substituting in the likelihood defined in Equation (4.13c) and the joint a pri-

ori density estimate p(k) = p(t, ρ) allows expressing the MAP as the cumulative

product

kMAP = argmax
k

p(t, ρ)
m
∏

j=1

pǫ(ǫj) (4.15)
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In practice, to prevent issues with numerical computation on values that can

span a large range, the logarithm of the constituent likelihood and priors is used,

converting the product above to a summation. So the optimal knot locations are

given by

kMAP = argmax
k

log

(

p(t, ρ)
m
∏

j=1

pǫ(ǫj)

)

(4.16a)

= argmax
k

(

log p(t, ρ) +

m
∑

j=1

log pǫ(ej)

)

(4.16b)

The optimization algorithm described in Section 4.7 searches for the best knot

location for the characteristic point under consideration by finding the maximum

a posteriori estimate using Equation (4.16b).

4.7 OPTIMIZATION

The optimization algorithm described here finds the best knot locations for a given

beat using the MAP calculation outlined above. It assumes that for each beat un-

der analysis the beat detector has located the R wave peak, and that the ECG

signal comprising the beat under consideration has been extracted. In addition,

a preprocessing step converts the times and amplitudes of the waveform samples

to be relative to the time and amplitude of the R wave peak as defined by Equa-

tion (4.3).

The first step of the optimization is to place all knots K representing both char-

acteristic points and support locations on their initial locations. The optimization

algorithm will modify their locations based on the figure of merit in its search for

the best knot locations representing the signal’s characteristic points.

The algorithm determines initial knot locations, prior to optimization, using

the R wave location for each beat obtained from the beat detector, and the

location prior probabilities derived from the training data as described in Sec-

tion 4.4.1. Referring to the set of knots representing the characteristic points C



www.manaraa.com

115

described in Equation (4.1), the subset of knots corresponding to the QRS com-

plex {Qo, Qp, Rp, Sp, R
′

p, Sf} are initialized to the means of the time priors shown

in Table 4.2. Initial knot amplitudes are set to the waveform amplitudes at those

times.

The higher variability of P and T wave locations with respect to the R wave

necessitates more care in their initial placement to reduce the chance of the op-

timization algorithm finding local optima for the characteristic points belonging

to these waves. The knot initialization algorithm makes a preliminary estimate

of the locations of these peaks by searching for a local maximum amplitude value

in the time range bounded by µt ± σt for Pp and Tp, as defined in Table 4.2. It

then initializes the onset and offset knots given by the set {Po, Pf , To, Tf} by trans-

lating their location time priors relative to the preliminary peak locations. Knot

amplitudes are again initialized to values of the waveform at these times.

The next step is initialization of the support knots S in Equation (4.4) de-

fined mathematically in Section 4.2. The knot initialization algorithm places the

P wave peak support knot P1 at the midpoint of amplitudes of {Po, Pp}, and the

support knot P2 at the midpoint of amplitudes of {Pp, Pf}. It similarly places the

T wave support knots T1 and T2 at amplitude midpoints of {To, TP} and {Tp, Tf},

respectively.

The remaining support knots include two knots on the ascending slope of the

QRS complex {QR
1 , QR

2 }, and two on the descending slope {RS
1 , RS

2 }. As defined

previously, the knot initialization algorithm places these knots at one-fifth and

four-fifths of the amplitude difference between Qp and Rp for the QR support

knots, and at one-fifth and four-fifths of the amplitude difference between Rp and

Sp for the RS support knots.

The knot optimization, corresponding to the loop shown as the shaded rectangle

in the spline framework Figure 3.1, can be started once initialization is complete.

The choice of optimization algorithm was driven by the need to efficiently find
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an optimum without the use of a gradient, due to the difficulty of analytically

representing the the gradient of the figure of merit. The optimization algorithm

used in this implementation of the spline framework determines the optimal knot

locations by finding kMAP as defined by Equation 4.16b using the cyclic coordinate

method (CCM) [100].

CCM is a gradient-free algorithm which exhaustively searches the coordinate

axes to be optimized in succession, constraining the search to only one direction

at a time. It is computationally efficient and suited to problems where the number

of parameters is not very large, as is the case for this application, which optimizes

only the 11 characteristic point locations defined by C.

The coordinate axes searched by CCM are the set of all possible knot locations

for each characteristic point knot in C, as bounded by its immediate neighbors to

the left and right in the full set of knots K. The first and last knots in C use the

signal’s start and end points as their left and right bounds, respectively.

With this approach the input to each CCM iteration is a three-tuple of neigh-

boring knots, with the location of the center knot being optimized. The locations of

the calculated support knots in S are not optimized, but they are used as bound-

ing points for neighboring knots in C that are being optimized. The algorithm

updates support knot locations after every CCM iteration to reflect changes in the

characteristic point knot locations C.

After finding the optimal location of a knot, optimization proceeds to the next

one in C. It repeats the process on the entire set of knots until there is no change

in the figure of merit, indicating the best knot locations kMAP have been found.

4.8 RESULTS

The prospective test set used to evaluate algorithm performance comprises 200 beats

from 20 randomly-selected subjects, as described in Appendix B. Two reviewers

manually annotated all 200 beats with locations of characteristic points in C.
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This section first graphically presents results of the Bayesian optimization al-

gorithm on a few beats from the test set to illustrate results of the approach on

a number of interesting morphologies. Aggregate accuracies are then presented

for all beats in the test set, comparing the algorithm’s optimal locations to an

established standard when available, and against the reviewers’ manually-specified

locations for characteristic points that lack an established standard.

Each of the results illustrated in Figures 4.13 through 4.16 shows the under-

lying ECG signal, its optimized locations and their relevances, and the linearly-

interpolated signal estimate. The figures also show the reviewers’ manual anno-

tations when available, but because the reviewers were not mandated to annotate

points that did not exist or were ambiguous, each characteristic point may have

zero, one, or two annotations.

The complexes in Figure 4.13 exhibit all characteristic points in C with the

exception of the T wave onset. Note that Reviewer 1 did not specify a location for

the P wave onset Po in Figure 4.13a, but the algorithm’s location closely matches

Reviewer 2’s annotation. Both of these signals are relatively linear in the region

between the end of the QRS complex and the T wave peak, so there is no clear

T wave onset To. As a result the optimized knot has a low relevance as indicted

by the very small outer ring.

The complexes in Figure 4.14 were chosen to illustrate biphasic waveforms

characterized by a large S peak. It these cases both are also lacking Q wave and

R′ peaks. For both of these waveforms optimization has moved the Qp knot onto

the ascending QR slope between Qo and the QR
1 support knot. Similarly, the R′

p

knot is on the slope between Sp and the QRS offset Sf .

Figure 4.15 shows two examples with a broad R wave, one missing the Q wave

peak and the other missing the R′ peak. In Figure 4.15a the Qp knot has migrated

to a break in the ascending QR slope between Qo and the QR
1 support. Similarly,

in Figure 4.15b knots for Sp and R′

p are on the descending waveform between the
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(a) Very small Qp and R′

p, no To.
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(b) Very small R′

p, no To.

Figure 4.13: Results of the optimization on examples from the test set exhibiting most of the

characteristic points C. Small open circles indicate the support knots S. Larger red-filled circles

are the locations of the optimized knots representing the characteristic points C. The latter are

circumscribed with circles of variable size with diameters proportional to |ρ|. Triangles indicate

locations of reviewers’ annotations when available; Reviewer 1’s annotations are below the signals,

and Reviewer 2’s are above.
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p.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.5

0

0.5

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

Relative Time (s)

(b) No Qp or R′

p, very small Tp.

Figure 4.14: Results of the optimization on examples from the test set exhibiting biphasic wave-

forms, characterized by large Sp. See Figure 4.13 for legend.

RS
2 support and the QRS complex offset So.

Figure 4.16 shows waveforms with line noise. The algorithm generally performs

well, with the contribution of priors in the optimization helping mitigate the ef-

fect of noise on knot placement. However, some locations are still impacted: for
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(b) Small Qp, no R′

p, and no Sp.

Figure 4.15: Results of the optimization on examples from the test set with wide R wave. See

Figure 4.13 for legend.

example, Po and Sf for Figure 4.16a and Tp for Figure 4.16b.

Table 4.4 compares the reviewers’ annotations against each other and against

optimal locations determined by the algorithm. For each characteristic point in C,

the table shows the mean µR and standard deviation σR of the difference, in time,
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(a) All points in C present.
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(b) Missing Qp, R′

p, and To.

Figure 4.16: Results of the optimization on examples from the test set corrupted with line noise.

See Figure 4.13 for legend.

of the two reviewers’ annotations for all beats in the training set. It also shows the

mean µ and standard deviation σ of the error between the algorithm-optimized

knot locations and the average value of the reviewers’ manually-specified charac-

teristic point locations. The number of complexes from the 200-beat prospective
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test database used in each error statistic calculation are shown in the columns la-

beled nR and n. The inter-reviewer comparison count, nR, is the number of beats

which both reviewers annotated, and for which an inter-reviewer difference could be

computed. The algorithm evaluation count, n, is the number of beats which either

reviewer annotated, and against which the algorithm could be evaluated. Review-

ers were not mandated to annotate any points, and missing manual annotations

may be due to lack of that feature in the underlying waveform or to sufficient noise

or ambiguity in the morphology to prevent the reviewers from making a manual

annotation.

In general, the reviewers’ annotations show good agreement. All mean dif-

ferences µR are four milliseconds or less, corresponding to two or fewer sample

intervals. The standard deviations of the reviewers’ differences σR are also good,

with a maximum of 8.5 milliseconds for the T wave onset, which can be very diffi-

cult to ascertain due to its lack of curvature. A two-sample t-test on the reviewers’

manual annotations for each characteristic point indicated no significant differences

between the means of the reviewers’ annotations at a 5% level of significance for

any of the characteristic points.

It is recognized in the literature that low bias in characteristic point estimates

is a necessary but not sufficient criterion to quantify performance of an algorithm

estimating their locations. A more important indicator is the variance of the error

in relation to established standards. For this comparison, the table includes the

standard deviation tolerance values 2σCSE, as specified by the Common Standards

for Quantitative Electrocardiography (CSE) Working Party in [71]. These values,

when available, are “two standard deviations of the difference between the median of

the individual and final referee estimates,” and estimate “what can be expected from

an expert cardiologist.” This is a demanding standard for automated approaches

and subsequent efforts such as [54] define “strict” and “loose” criteria around the

CSE tolerance, specifically, an algorithm satisfies the loose criterion if σ < 2σCSE,
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Table 4.4: Characteristic point estimation errors on the prospective test data set.

For each characteristic point in C, this table presents the mean, standard deviation,

and sample count for inter-reviewer differences as well as the algorithm’s error

against the mean of the reviewers’ annotations. • indicates the standard deviation

meets the loose criterion σ < 2σref , ◦ indicates it is within one sample point of

2σref , and ⋆ indicates that it meets the strict criterion σ < σref.

Error statistics µ, σ in milliseconds

Rev1 vs. Rev2 Mean vs. Algorithm σref

Char. Point C µR σR nR µ σ n 2σCSE 2σR

P onset Po -0.6 3.7 157 0.6 11.8 ◦ 190 10.2 –

P peak Pp -1.0 2.5 151 1.4 4.0 • 171 – 5.0

P offset Pf -2.8 6.2 168 2.6 12.1 • 192 12.7 –

QRS onset Qo -0.3 3.8 168 -1.0 6.9 ◦ 189 6.5 –

Q peak Qp 0.0 1.0 92 3.3 3.4 ◦ 115 – 2.0

S peak Sp 0.1 0.7 190 -1.2 1.3 • 190 – 1.4

R′ peak R′

p 0.4 1.1 83 -5.1 7.6 125 – 2.1

QRS offset Sf 3.5 5.4 174 0.1 9.2 • 199 11.6 –

T onset To 0.0 8.5 28 -3.8 18.3 ◦ 71 – 17.0

T peak Tp -1.3 2.1 176 3.7 4.4 ◦ 188 – 4.3

T offset Tf -4.0 8.3 151 -3.9 8.5 ⋆ 174 30.6 –

and the strict criterion if σ < σCSE.

Unfortunately, the CSE Working Party does not define tolerance values for

most of the characteristic points specified by C and estimated by the algorithm

described here. Since the manual reviewer annotations fulfill the strict criterion

σR < σCSE for all points specified by CSE except Qo (and for which σR ≪ 2σCSE),
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this suggests a corresponding tolerance value 2σR using the standard deviation of

reviewer error as the reference value for characteristic points not available in [71].

So the subsequent comparisons of algorithm annotations use σref = σCSE when σCSE

is available, and σref = σR when it is not.

Symbols are used in Table 4.4 to characterize the algorithm’s error variance

results as compared to the applicable reference σref as determined above. The

symbol ⋆ indicates a standard deviation that satisfies the strict criterion σ < σref.

The symbol • indicates a standard deviation that satisfies the loose criterion σ <

2σref. And the symbol ◦ indicates a standard deviation that is within one sample

point (two milliseconds) of the loose criterion, σ < 2σref + 2ms.

4.9 THE IMPACT OF PRIORS

In order to objectively determine the contribution of a priori probability density

estimates on the optimization process, the test data were evaluated on an instance

of the framework that incorporated only the likelihood term in the figure of merit,

ignoring the joint time-relevance prior. No other functionality of the algorithm

differed in this instance, including its knot initialization algorithm which used

location priors as described in Section 4.7.

Table 4.5 shows means and standard deviations of errors for all characteristic

points in C as compared against the reviewers’ manual annotations. These values

are computed using the location (in time) of each characteristic point estimate in

the test set. Results using the Bayesian figure of merit presented in Table 4.4 are

repeated here and augmented with those from the version using the likelihood-only

figure of merit.

An aggregate metric is useful in summarizing the performance of both versions

of the algorithm across all characteristic points. The mean squared error (MSE)

can be used to assess the quality of an estimator, and is defined the average of

the squared errors of each location estimate. MSE incorporates both the variance
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and bias of the estimator into a single value that can be used to characterize the

algorithm’s performance for each characteristic point.

Using Equation 4.2, let ti be the location of knot ki as determined by man-

ual annotations for all characteristic points i ∈ C, and let t̂i be the algorithm’s

estimated location for that point. Then µi and σi are the mean and standard devi-

ation of the error in the location estimate ti− t̂i, computed across all characteristic

points i in the test set.

The MSE is defined in terms of µi and σi (see, for example, [7] or [40]), as the

sum of the estimator’s variance and squared bias, or

MSE = σ2

i + µ2

i (4.17)

A good estimator is one that is both accurate, having low bias — and precise, with

low variance.

The root mean square error is defined as the square root of the mean squared

error as defined by Equation 4.17:

RMSE =
√

σ2
i + µ2

i (4.18)

and is shown in the bottom row of Table 4.5 for each approach. RMSE provides a

measure of the estimator’s performance in units of time, and indicates a significant

degradation in accuracy performance when the priors are not used. The RMSE

degrades by approximately 50% from 9.6 milliseconds to 14.3 milliseconds when

priors are not incorporated by the figure of merit.

There are a few characteristic points that show a very small improvement with

the likelihood-only figure of merit. The standard deviations of Pf , Qp, and To show

reductions of 2.5, 0.3, and 1.7 milliseconds respectively. These improvements are

overwhelmed by the performance of several other points that degraded by multiple

sample intervals. The reason for this phenomenon is a subject for future research;

it may be due to a combination of the linear interpolant’s ability to localize critical

points and more consistent knot placement in the absence of the influence of priors.
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Table 4.5: A comparison of characteristic point estimation errors on the prospective

test data, as evaluated with the Bayesian figure of merit and a figure of merit

comprised solely of the likelihood. For each characteristic point in C, this table

presents the mean and standard deviation of errors against manual annotations

from the reviewers. The RMSE reflects the aggregate error of the estimator across

all points with each figure of merit, and shows significant degradation when priors

are not used. All values are in milliseconds.

Bayesian Likelihood

Char. Point C µ σ µL σL n

P onset Po 0.6 11.8 -0.9 11.9 190

P peak Pp 1.5 4.2 1.7 4.6 171

P offset Pf 2.4 11.7 0.1 9.2 192

QRS onset Qo -0.8 7.0 -10.8 20.7 189

Q peak Qp 3.3 3.4 4.0 3.1 115

S peak Sp -1.2 1.2 -2.0 2.0 190

R′ peak R′

p -5.1 7.6 -6.0 9.8 125

QRS offset Sf -0.5 8.8 9.4 24.5 199

T onset To -4.7 18.8 0.8 17.1 71

T peak Tp 3.5 4.1 3.2 9.5 188

T offset Tf -3.9 8.7 -5.6 12.5 174

RMSE 9.6 14.3

To illustrate how incorporating priors improves estimates, Figure 4.17 shows

expanded views of a beat from the test set analyzed with both versions of the

algorithm. Figure 4.17a shows results of the optimization using the Bayesian figure
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(a) Knots optimized with the Bayesian figure of merit.
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(b) Knots optimized with a figure of merit using only the likelihood.

Figure 4.17: A comparison of optimal knot locations using the Bayesian figure of merit and a

figure of merit comprised solely of the likelihood. Highlighted knots indicate, from left to right,

the QRS onset, S wave peak, QRS offset, and T wave onset. Eliminating priors from the figure

of merit causes these knots to move from the locations indicated by yellow markers in (a) to the

locations indicated by black markers in (b). Knots representing the Q and R′ wave peaks are

also adversely impacted.
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of merit that incorporates the priors. Figure 4.17b shows results using a figure of

merit comprised solely of the likelihood.

These figures highlight four knot locations: from left to right, they correspond

to the locations of QRS onset Qo, S wave peak Sp, QRS offset Sf , and T wave

onset To. Locations of the knots representing peaks of the Q wave Qp and the R′

wave peak are also affected, but not as much as those that are highlighted.

The highlighted markers in Figure 4.17a show locations for these characteristic

points that are generally good, matching annotations provided by the reviewers to

within a few samples. The corresponding markers in Figure 4.17b are significantly

off of their desired positions. The Qo knot is far to the left of its proper location

and immediately follows the P wave offset. The knot for Sp is no longer on the

peak, having moved to the left. The QRS offset knot Sf is very far to the right

and aligns with the T wave onset marked by both reviewers. This has caused

optimization to move the To knot too far to the right on the T wave.

To obtain insight into how the Bayesian figure of merit fuses the priors and like-

lihood to provide improved estimates of characteristic point locations, Figures 4.18

through 4.20 show the final CCM iteration that produced optimal knot locations

for three of the points highlighted in Figure 4.17. For each characteristic point,

results are shown for both figures of merit.

Each of these figures shows, in blue, the segment of the original signal surround-

ing the optimized knot. That knot, its immediate neighbors to the left and right

(from K), and the resultant linear spline estimate of the segment are displayed in

red. The green line indicates the value of the likelihood computed at each location

of the center knot as CCM moves it across the domain of the signal segment, i.e.,

between its neighboring knots. The magenta line similarly represents the value of

the time-relevance prior at each point, and the black line is the computed figure

of merit.

The best values for the likelihood, prior, and figure of merit are indicated by
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(a) Knot optimized using a figure of merit

comprised only of the likelihood. The opti-

mal location is 25 samples (50 ms) to the left

of the correct location, and too close to the

P wave offset.

−0.08 −0.06 −0.04 −0.02
Relative Time (s)

(b) Knot optimized with Bayesian figure of

merit. Incorporating the priors moves this

knot to within one sample of its desired lo-

cation at -22 ms, at the base of the QRS com-

plex.

Figure 4.18: A comparison of the final optimization search for Qo using a figure of merit comprised

solely of the likelihood against the Bayesian figure of merit. Figures show values of the likelihood

in green, the time-relevance prior in magenta, and the computed figure of merit in black, for

every location of the center knot between its neighbors. The center knot is the optimal location

for each figure of merit.

an asterisk of the appropriate color. In order to increase visibility at the top of

the figures, the figure of merit line is inverted, and its best value is at the bottom

of the plot.

Displaying such a wide variety of data on a single plot is challenging, so all

values were normalized to the range available. As a result the vertical axes do

not indicate true magnitudes of the displayed data. They are, however, useful in

assessing relative changes in each value as the center knot is scanned across the

signal segment by CCM. Their time axes are expressed relative to the R wave peak,

and correspond with the larger depictions shown in Figure 4.17.
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 0.01  0.02  0.03  0.04
Relative Time (s)

(a) Knot optimized using a figure of merit

comprised only of the likelihood. The sig-

nal’s large slope degrades the likelihood

when the knot is correctly placed on the

peak; as a result it is placed one sample to

the left of the peak.

 0.01  0.02  0.02  0.03
Relative Time (s)

(b) Knot optimized with Bayesian figure of

merit. Incorporating the priors moves this

knot to exactly the peak of the S wave at

18 ms.

Figure 4.19: A comparison of the final optimization search for Sp using a figure of merit comprised

solely of the likelihood against the Bayesian figure of merit. The figures show values of the

likelihood in green, the time-relevance prior in magenta, and the computed figure of merit in

black, for every location of the center knot between its neighbors. The center knot is the optimal

location for each figure of merit.

The left sub-figure of all of these figures, labeled (a), displays results of the

final optimization cycle with a figure of merit comprised solely of the likelihood.

Results of the final optimization cycle with the Bayesian figure of merit are shown

in the right sub-figure, labeled (b).

In order to give an indication of how the time-relevance priors might have

impacted the (a) sub-figures, the values of the prior are shown even though they

are not used in the computed figure of merit. So for all of the (a) sub-figures, the

figure of merit (black) are an inverted version of the likelihood (green), indicating
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 0.04  0.09  0.14  0.18
Relative Time (s)

(a) Knot optimized using a figure of merit

comprised only of the likelihood. In this long

segment, the point of maximum likelihood

is at 160 ms, 57 samples to the right of its

proper location.

 0.03  0.07  0.12  0.16
Relative Time (s)

(b) Knot optimized with Bayesian figure of

merit. Incorporating the priors moves this

knot to 42 ms, within two samples of its cor-

rect location.

Figure 4.20: A comparison of the final optimization search for Sf using a figure of merit comprised

solely of the likelihood against the Bayesian figure of merit. The figures show values of the

likelihood in green, the time-relevance prior in magenta, and the computed figure of merit in

black, for every location of the center knot between its neighbors. The center knot is the optimal

location for each figure of merit.

exact equality.

Because of the iterative nature of CCM, and that it is applied multiple times

to each segment, knot locations for the two figures of merit are generally different.

For each characteristic point, the time axis can be used to determine the location of

the segments with respect to each other, and with respect to the larger depictions

shown in Figure 4.17.

Figure 4.18 shows the plots described above for the QRS onset characteristic

point, Qo. The best location shown in Figure 4.18a corresponds to the maximum
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value of the likelihood, which occurs at -72 milliseconds. This point misses the cor-

rect QRS onset by 50 milliseconds (25 sample intervals). Results with the Bayesian

figure of merit are shown in Figure 4.18b. In this case, the priors’ influence has

moved the knot to one sample of the desired location at -22 milliseconds.

Figure 4.19 shows the plots described above for the S wave peak, Sp. The

location of the peak based only on the likelihood in Figure 4.19a is impacted by

the large slope of the descending RS wave. With the center knot at the correct

position (i.e., at the negative peak of Sp), the difference between the linear estimate

and the signal causes a sizable decrease in likelihood, so the knot is placed to the

left of the peak. Incorporating the priors causes the knot to move to the exact

location of the peak, as shown in Figure 4.19b.

Finally, the CCM optimization for the QRS offset, Sf , is shown in Figure 4.20.

In this relatively long signal segment, the likelihood-only figure of merit peaks at

160 milliseconds, far to the right of the desired location at 44 milliseconds, as shown

in Figure 4.20a. Incorporating the priors causes the knot to move to within one

sample of the correct location as shown in Figure 4.19b.

4.10 REDUCING THE TRAINING SET

The previous section explored the effect of completely eliminating priors from the

figure of merit. To help determine the effect of the quantity of training data on

the accuracy of characteristic point location estimates at a more granular level,

this section reports results of the optimization on the prospective test set using

different priors calculated from reduced sets of training data.

In five separate runs, priors were recalculated from the manual annotations of

a randomly-selected set of subjects. Each of the five runs used priors calculated

from data of one, two, four, eight, 16, and 32 subjects. There were a total of

40 subjects in the training set.

Table 4.6 shows the results of the optimization for all of these runs. Each row
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of the table corresponds to a different number of subjects, ns, from the training

set whose data were used to compute priors. Each column, R, indicates the run

number for a different randomly-selected set of subjects used in obtaining the

priors.

The entries in the table for each run are the RMSE values calculated from the

means and standard deviations of the errors in the estimates using Equation 4.18.

The rightmost columns, µRMSE and σRMSE are the means and standard deviations

of the RMSE values for each row.

Table 4.6: RMSE values for characteristic point estimates on the prospective test

set, obtained using priors calculated from annotations on a reduced set of subjects.

Each row corresponds to the number of subjects, ns, whose data were used to cal-

culate priors. Columns R1 through R5 indicate different sets of randomly-selected

subjects for each row. The rightmost columns, µRMSE and σRMSE are the means and

standard deviations of the RMSE values for each row.

ns R1 R2 R3 R4 R5 µRMSE σRMSE

1 16.69 16.62 13.44 12.75 19.01 15.70 2.58

2 10.84 10.80 11.43 14.62 11.35 11.81 1.60

4 10.85 9.76 11.09 11.10 10.39 10.64 0.57

8 9.17 9.40 9.66 9.41 10.40 9.61 0.48

16 9.84 10.00 9.56 8.71 9.19 9.46 0.52

32 9.82 9.79 9.55 9.60 9.31 9.61 0.21

It is clear from the table that RMSE values are highest when only one subject

is used for obtaining priors, and generally decrease as the number of subjects is

increased. Neither the mean nor the standard deviation decreases monotonically

with increasing number of subjects. However, the mean values for the three bottom
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rows (corresponding to eight, 16, and 32 subjects) are within two percent of each

other indicating very little change, and the standard deviation obtained using 32

subjects is less than half its nearest value.

To better illustrate the impact of training set size on accuracy, Figure 4.21

shows superimposed plots corresponding to the values in Table 4.6. The plots in

gray are the RMSE values for each individual run, R1 through R5. The plot in

blue is the mean RMSE value across all five runs for each value of ns. Also in

blue is a whisker plot showing one standard deviation above and below each mean

value.
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Figure 4.21: Plot of RMSE values for characteristic point estimates on the prospective test set,

obtained using priors calculated from annotations on a reduced set of subjects. These correspond

to values shown in Table 4.6, with the first and last points being the RMSE values for the

likelihood-only and full training previously reported. The plots in gray are the RMSE values for

runs R1 through R5. The plot in blue is the mean RMSE value across all five runs for each value

of ns. The whisker plot shows one standard deviation above and below each mean value.

The first and last points in the plot are not shown in Table 4.6, and correspond
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to the RMSE values for the zero-subject case and for the 40-subject case. The

former was presented in Section 4.9, and was obtained using the likelihood-only

figure of merit. It has an RMSE value of 14.3 milliseconds. The latter corresponds

to the full training set, whose results were reported in Section 4.8 and again in

Section 4.9. It has an RMSE value of 9.6 milliseconds. Since there is only one run

corresponding to each of these cases, there is no standard deviation.

The likelihood-only case has lower RMSE than several of the the single-subject

runs (R1, R2, R5) and one of the two-subject runs (R4). The limited data used

in these cases biases the optimization in favor of the one or two subjects whose

data were used in calculating the priors, and away from the average that more

accurately represents all the subjects in the test set. As a result the errors are

generally larger and have greater variance between runs.

There is a knee in the curve at eight subjects, after which the mean shows very

little change. However, the standard deviation has its minimum value with 32

subjects. These data suggest that — for cases where the subjects used in training

are not the same as those in the test set (which is the case here) — at least

eight subjects should be in the training set to reduce mean error, and that further

increasing the number of subjects can reduce RMSE variance.

4.11 SUMMARY

This chapter described an implementation of the spline framework to represent

ECG waveforms and optimally estimate the locations of several characteristic

points that can be used to describe the signal. The framework integrates prior

information about the amplitude and timing of these points obtained from a large

training database, a flexible spline representation to identify the features of in-

terest, and Bayesian inference to balance the prior information with the observed

data. With suitably defined knots and training data, the framework can readily

be extended to include other leads, different characteristic points, or be applied to
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other semiperiodic signals.

The implementation performed well on a prospective test data set, accurately

locating knots corresponding to the characteristic points C across a wide range

of normal morphologies comprising 200 beats from 20 subjects. Table 4.4 shows

low mean errors for the algorithm when compared to the average of the reviewers’

manual annotations. The largest mean errors are approximately five milliseconds,

which corresponds to 2.5 signal samples at the 500 Hz sampling rate used for this

data.

The variance of the errors is recognized to be more important than their mean.

To assess characteristic point location variability the standard deviations of errors

were compared against a reference standard deviation. When available, the ref-

erence was the 2σCSE value defined by the CSE Working Party in [71]. For those

characteristic points not defined by the CSE, the 2σR value derived from manual

annotations by the reviewers was used (as described in Section 4.8).

As shown in Table 4.4, of the 11 error standard deviations corresponding to

characteristic point locations estimated by the algorithm, one meets the strict crite-

rion, four meet the loose criterion, and five are within one sample (two milliseconds)

of the loose criterion. The R′ peak is the only point that is not close to the reference

with a difference of a little over five milliseconds.

An analysis of errors in R′ knot placement showed that the problem is due to

the low amplitude of the peak in much of the data, which can cause the feature

to be missed during the optimization process. Figure 4.22 shows two beats from

the same subject illustrating an error representative of those resulting in high

error variance for the R′ peak. In Figure 4.22a the R′ wave is detected correctly

despite its small amplitude. In Figure 4.22b, however, slight changes in the beat’s

morphology in addition to the R′ wave’s small amplitude cause the knots for the

R′ wave peak and QRS offset to move down to a relatively linear region of the

S wave, missing their correct locations.
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(a) Correctly estimated R′ and So.
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(b) Incorrectly estimated R′ and So.

Figure 4.22: Analysis of the error in R′ location estimates. Shown are two QRS complexes from

the same subject in the test set, indicating (from left to right) the characteristic points Qo, Qp,

Sp, R′ , and Sf as determined by the optimization. In (a), the algorithm properly places all

knots. Slight differences in the morphology of (b), compounded by the very small amplitude of

the R′ peak, result in incorrect placement of both the R′ wave peak and QRS offset.

Overall the algorithm performs well for beats that are described by the selected

characteristic points C and supported by the a priori probability density estimates

developed using the training data set. Beats whose morphology is not described

by C, such as the test beats used to illustrate the spline framework in Chapter 3,

will not be handled well by this instance of the framework. Properly analyzing

such beats will require a different set of characteristic points and associated priors.



www.manaraa.com

138

Chapter 5

CONCLUSION

This dissertation presents a framework for representing semiperiodic signals us-

ing splines, and an implementation of that framework to optimally estimate the

locations of a signal’s characteristic points. The optimization algorithm uses a

Bayesian approach that incorporates prior probabilities of the characteristic points

of interest derived from a manually-annotated training data set.

It also documents an extensive search exploring algorithms in the literature that

address the signal segmentation and delineation problem. There is a significant

amount of work in this field broadly categorized into conceptual classes including

algorithms that operate in the time domain, on transformed signals, using models,

or with pattern recognition techniques. None of the algorithms found in the liter-

ature review explicitly use prior information in signal delineation or for optimally

estimating characteristic point locations.

Splines, which are inherently a time domain technique, provide an efficient

signal representation and have been applied to semiperiodic signals like the elec-

trocardiogram in the literature. However, their existing use only addresses noise

elimination, data compression, and waveform analysis (for example, to locate the

ST segment of an ECG waveform). The efforts described in Chapters 3 and 4 are

novel in developing a generic framework and then applying it to optimally estimate

an arbitrary set of a signal’s characteristic points.



www.manaraa.com

139

5.1 CONTRIBUTIONS AND KEY LEARNINGS

The first contribution of this dissertation is the framework for parametric repre-

sentation of semiperiodic signals as described in Chapter 3. This framework allows

representation of semiperiodic waveforms on a cycle-by-cycle basis using splines.

It is very flexible, allowing choice of knot initialization method, spline interpolant,

figure of merit, and optimization algorithm. These choices facilitate tradeoffs be-

tween factors including computational complexity, fidelity of signal representation,

and ability to estimate characteristic point locations.

The choice of spline interpolant impacts computational complexity, fidelity of

the signal’s interpolated estimate, and even the ability to accurately estimate char-

acteristic point locations. Although more sophisticated interpolants can estimate

the signal itself with higher fidelity as measured by RMSE, differentiability con-

straints can adversely impact their use in characteristic point estimation by moving

the knots off of true characteristic points during the optimization process. In ap-

plications estimating characteristic point locations, a linear interpolant serves well

and with low computational burden.

Using a dynamic knot initialization algorithm such as RPA allows represent-

ing a cycle of virtually any semiperiodic morphology, independent of assumptions

regarding specific characteristic points. However its use for estimating character-

istic point locations can be problematic because each dynamically allocated knot

created by the recursive partitioning would have to be mapped to a corresponding

characteristic point after its optimal location is determined.

The second contribution of this dissertation addresses the knot-to-characteristic

point mapping problem by developing an implementation of the spline framework

for optimal estimation of a fixed number of characteristic point locations in an

ECG signal. The algorithm described in Chapter 4 uses a pre-defined set of knots,

each representing one characteristic point of interest. Instead of using RPA as



www.manaraa.com

140

before, knots are initialized to locations calculated from the prior distributions

which are obtained from manual annotations of a training data set.

This implementation also introduces a new figure of merit for optimization:

the Bayesian a posteriori probability of a set of knot locations, given the observed

signal. The figure of merit is computed from an estimate of the a priori joint

probability density of the times and curvatures (or relevances) of the characteristic

points, which is the third major contribution of this dissertation.

As with knot initialization, these priors are estimated from manual annotations

of the training data. In this case, however, the priors include additional information

regarding the curvature of each knot that is computed from the relative times and

amplitudes of each three-tuple of knots; i.e., the knot under consideration and its

immediate neighbors to the left and right. This prior allows the figure of merit to

incorporate known curvatures of each characteristic point in assessing each knot

location.

In this domain, locations of low curvature like waveform onsets and offsets are

distinguished from those with moderate or high curvature, such as peaks of P and

T waves, or Q, S, and R′ peaks. Incorporating curvature into the optimization

process makes it less likely for the figure of merit to result in a high value when the

knot undergoing optimization is at an incorrect location. For example, this could

occur if a knot representing a waveform’s peak is located at the waveform’s onset

or offset.

A cyclic coordinate method search exhaustively explores the search space of

each knot between its immediate neighbors, finding the location resulting in the

maximum a posteriori probability, or MAP. Several successive applications of the

CCM on the entire set of knots help ensure the solution converges to the best

figure of merit possible given the limited number of knots and their constrained

locations.

The fourth contribution of this dissertation is the objective means to obtain
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priors from training data. In this implementation manual annotations of the char-

acteristic provide the times and amplitudes used to model the location priors used

for knot initialization, as well as the joint time-relevance priors used for optimiza-

tion.

Using priors in the optimization process is intuitively appealing as it mimics, in

a very limited way, the approach human experts use when analyzing physiological

waveforms. To diagnose or interpret a particular subject’s ECG, for example,

a clinician will review that subject’s waveform preceding the time of interest in

order to establish a baseline. Changes, as measured against this baseline, help the

clinician identify conditions of interest. Of course, a clinician’s prior knowledge also

includes extensive training and other information about the subject and their state.

In a manner loosely analogous to Bayesian optimization, the clinician fuses their

prior knowledge with observations in order to make an estimate of the subject’s

current health state (i.e., a diagnosis).

Many methods in the literature use heuristic thresholds and windows to deter-

mine characteristic point locations. Using prior knowledge in the form of estimates

of the a priori probability densities of characteristic point locations reduces the

need for such empirically-determined values.

The Bayesian approach is an effective one, but only to the extent that the

priors incorporated in the optimization reflect reality. Human physiology exhibits

tremendous variation, between subjects and even for a given subject over time.

The power that priors bring to this approach can be obviated, if they are not

representative of the signals under analysis. The more accurate the priors are in

this regard, the greater their benefit in complementing the likelihood and providing

the best estimate.

The figure of merit has the most direct impact in achieving the goal for each

instance of the framework. For a high-fidelity representation of the signal an overall

measure comparing the interpolated estimate against the observed signal, such as



www.manaraa.com

142

RMSE, can be useful. To estimate characteristic point locations, other factors,

such as the time of the knot and its relevance should also be incorporated in the

figure of merit. The maximum a posteriori Bayesian figure of merit described in

Sections 4.3 and 4.6 incorporates the observed signal, as well as prior knowledge of

knot times and relevances. Using this figure of merit, the algorithm obtained low

mean errors, and variances close to a standard based on reviewers’ annotations,

for virtually all characteristic points.

The optimization method is a key component of the framework, finding the

model parameters (the knot locations for a spline representation) producing the

best figure of merit. Choice of this algorithm is driven by balancing computa-

tional complexity against its ability to find the globally-optimal set of characteristic

points. An exhaustive search of all possible locations would produce the globally

optimal points. However, due to increased computational load this approach can

be prohibitive for a large number of signals or if resources are limited. Employing

CCM as described in Section 4.7 performs an exhaustive search, but on a con-

strained subset of the full search space. Although there are a few cases where this

approach settles on a local optimum, overall it provides an acceptable tradeoff with

good performance.

Since this process occurs in the time domain and the optimized knots map di-

rectly to the characteristic points they estimate, there is no translation required to

make the algorithm results accessible to clinical domain experts. Another advan-

tage of the time domain representation is the compactness of its representation.

The relatively low duty cycles of the QRS complex, in particular, would require a

greater number of features if represented in the frequency domain at equal fidelity.

The algorithm described in Chapter 4 complements existing approaches with

a flexible alternative to locate characteristic points and delineate semiperiodic sig-

nals. This flexibility provides the capability to readily specify, train, and estimate

optimal locations for points not currently used in ECG analysis (a superset of
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C). Using this approach, researchers can investigate large databases more exten-

sively with reduced manual effort. Automatic, accurate, tracking of characteristic

point locations over extended times may lead to new metrics indicative of disease,

physiological stress, or other conditions of interest.

5.2 SIGNIFICANCE AND APPLICATIONS

Automatic, accurate estimation of characteristic point locations for semiperiodic

signals is especially important in analysis of physiological signals such as the elec-

trocardiogram. In this domain, characteristic points correspond to specific elec-

trophysiological changes in cardiac tissue that can be of clinical importance.

The locations and amplitudes of constituent waves, segments, and intervals in

the ECG signal are used to diagnose disease states and assess treatment efficacy.

Metrics derived from the characteristic points also reflect the state of the subject’s

autonomic nervous system providing a real time view of stress.

Temporal trajectories of characteristic points or metrics derived from them

have clinical value as well. In some leads there are beat-to-beat changes in the

amplitude of the R wave reflecting a subject’s respiration rate. Fluctuations in

instantaneous heart rate are driven by the autonomic nervous system, causing

RR intervals to exhibit reduced variability when the sympathetic nervous system

is activated and increased variability when the parasympathetic nervous system

is activated. ST segment deviation, in which a small segment of the ECG wave-

form becomes elevated or depressed with respect to the isoelectric level, is used

in cardiac stress tests to identify ischemia in the heart muscle. Other measures

whose temporal evolution is important include the QT interval and T wave alter-

nans. Prolongation or shortening of the QT interval has been established to be an

independent risk factor for sudden cardiac death [93], [24]. T wave alternans is a

very low amplitude beat-to-beat variation in the morphology of the T wave and

has similarly been linked to sudden cardiac death [36].
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For these reasons clinicians and researchers can benefit from tools that reliably

locate points of interest in large data sets and potentially in real time on wearable

devices. This capability can enable more thorough exploration of physiological

phenomena across large populations. And if deployed on-body, it can be used to

drive in-the-moment therapeutic interventions or to generate alarms in the case of

life-threatening events.

Although the examples documented in this effort involve the ECG signal, the

methods described can be used in other domains involving semiperiodic signals

where a spline representation or optimized estimate of the characteristic points are

of interest.

Other physiological signals that could benefit include cardiopulmonary signals

such as those obtained from a photoplethysmograph, pulse transducer, respiration

sensor (using resistive or impedance transducers), or blood pressure transducer

(invasive or non-invasive).

In the case of hemodynamic signals, characteristic points of pulsatile waveforms

are used to determine cardiovascular parameters such as pulse onset, systolic peak,

dichrotic notch, and dichrotic peak as determined by the confluence of the percus-

sion wave, tidal wave, and dichrotic wave ([105], [72]).

For respiratory signals, characteristic points can be used to identify tidal breath

cycles. Each cycle is can be described by only two characteristic points: the

first represents the beginning of the cycle at the start of the inspiratory phase

(which is also the end of the expiratory phase of the previous cycle). The second

characteristic point is at the transition of the inspiratory phase to the expiratory

phase. In [106], Wang et al. describe a method based on signal derivatives and

heuristic rules to automatically identify these characteristic points. In addition to

use in diagnostic applications, accurate identification of tidal cycles can be used in

therapeutic applications such as medication delivery systems. For example, tidal

cycle identification is used by [88] to adapt drug delivery to the patient’s breathing
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pattern, providing inhaled medication at the appropriate time during inspiration

to reduce waste and increase effectiveness.

Electroglottography (EGG) is a technique that measures the degree of con-

tact between vocal folds during production of voiced speech by detecting changes

in electrical impedance as measured by electrodes placed on a subject’s throat.

This noninvasive method is used by speech pathologists to assess vocal fold dys-

function. The EGG waveform is semiperiodic and the locations of characteristic

points provide important information about the vibration properties of the vocal

folds, including the time at which the lower margins of the folds contact, the point

of tightest contact, and when the folds start to separate [97]. The methods de-

scribed in this dissertation can be used to determine the optimal locations of these

characteristic points.

Another potential use of the spline framework and Bayesian optimization algo-

rithms is for spike sorting, a technique used in neuroscience to group spikes, the

action potentials produced by the firing of neurons, into clusters based on mor-

phological similarity, facilitating assignment spikes to the neurons generating them

[74]. In [70], spikes are characterized using features obtained from the minima and

maxima of first and second derivatives of the action potential signals. The ac-

tion potential signals could instead be represented by the spline framework with

optimized knot locations corresponding to the characteristic points defining each

spike’s shape. The optimized knot locations could then be used as features for

clustering and classification.

In biomechanics, electromyographic or on-body inertial sensors are often used

to monitor and assess activity. When captured for gait analysis, such signals are

semiperiodic with a fundamental frequency derived from the step-to-step inter-

val during walking or running. Identifying various points of interest such as heel

strike, terminal stance, toe off, and foot swing during each gait cycle can be useful

to characterize the gait signal for coaching purposes, rehabilitation, and in tracking
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progression of degenerative conditions like Parkinson’s Disease. In these applica-

tions points of interest in the gait cycle can be represented by characteristic points

whose locations are optimally estimated using the spline framework.

Tides, the variation of sea level caused by the gravitational attraction of the

moon and sun, are also semiperiodic. The study of tides, and in particular their

prediction, is an important aspect of physical oceanography and is used in marine

navigation, conservation, fishing, and construction [68]. In addition, tidal datums,

the base elevations used as reference values, are used as the basis for establishing

land ownership, economic zones, territorial seas, and high seas boundaries [67].

As tides are semidiurnal in most areas, there are generally two high tides and

two low tides each day. The corresponding daily water elevation waveform com-

prises two high water peaks (“higher high water” and “lower high water”), and

two low water negative peaks (“higher low water” and “lower low water”). These

are the characteristic points of this semiperiodic waveform, and can be used by

the spline framework to model the signal. The corresponding optimized knot lo-

cations can then be used to derive tidal period, tidal range, and tidal amplitude

values. These values, and their statistics taken over many observations, are used

in specifying tidal datums [92].

Photometry — the measurement of an object’s brightness — has long been

used in astronomy to ascertain important information regarding celestial objects.

The orbit of extra-solar planets (exoplanets) [73] or other objects such as magne-

tospheric clouds [98], around distant stars can impart a semiperiodic dimming in

the observed flux, or brightness, of the star. Characteristic points of the resultant

light curve waveform correspond to various points of the observed object’s orbit

around the star. These points can be used to indicate locations of initial, max-

imum, and final occlusion of the star by the orbiting body. These, in turn, can

provide information regarding the radii of the star and exoplanet, the mass of the

star, and the exoplanet’s orbital speed, among other values of interest.
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In some cases such as with multiple orbiting planets, orbiting clouds, or in the

presence of starspots which may be occluded by the orbiting object, the resultant

light curve may have additional features requiring a larger number of knots for

proper characterization [75].

5.3 FUTURE WORK

A number of improvements to the approach described in Chapter 4 can increase

accuracy, extend applicability of the algorithm, or provide additional information

regarding the signal under analysis.

5.3.1 Optimization improvement

Although the CCM optimization algorithm is an effective one, the implementation

described in Section 4.7 can find a local optimum resulting in poor knot placement.

The incorrectly estimated R′ peak and QRS offset described in Section 4.11, and

shown in Figure 4.22, are an example of how constraints imposed on the CCM can

cause this to occur.

As described in Sections 4.5 and 4.7, in order to optimize a knot’s location,

CCM searches all possible locations for the center knot of a three-tuple, bounded

by its immediate neighbors on each side. In the case described above, due to initial

knot locations and the morphology of the particular waveform, these constraints

preclude CCM from even from considering the proper locations for R′

p and Sf .

Figure 5.1 shows the same beat, illustrating the three-tuple surrounding the

QRS offset Sf and the corresponding linear estimate of the signal used to calculate

the likelihood. Figures 5.1b and 5.1c show other locations considered by CCM

during the optimization search. Both of these locations result in a poor estimate of

the underlying signal by the linear interpolant. The corresponding error results in

a low likelihood and figure of merit, so these locations are not selected. Figure 5.1a
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shows the best location determined by CCM. However, as previously discussed, the

locations of R′

p and Sf are not as desired.

To reduce the likelihood of identifying a local maximum, the proposed improve-

ment to the CCM optimization method scans two coordinate axes simultaneously,

achieving a more thorough exploration of the search space: instead of searching

for the best location of the center knot of a three-tuple, it searches for the best

locations of the two center knots of a four-tuple.

In the example above, this means scanning the region between the S wave peak

Sp and T wave onset To for the optimal locations of both R′

p and Sf . Figure 5.2

illustrates this approach. Figures 5.2a and 5.2b show two locations encountered

by the CCM optimization. Both of these have a large error in their linear estimate

and as before, result in a low value for the figure of merit. The locations for R′

p

and Sf shown in Figure 5.2c are the desired ones and with this improvement would

be identified as the optimal locations.

There is of course a cost associated with this improvement as considering a

larger part of the search space requires additional computation and time.

5.3.2 Explicit use of knot amplitude priors

Another potential improvement supports analysis of noisy signals. The effort de-

scribed in Chapter 4 uses the amplitudes of characteristic points only to compute

the knot’s relevance value; priors for the amplitude values themselves are not

explicitly used. Furthermore, the optimization algorithm determines amplitude

values by using the signal’s value at the knot time under consideration, effectively

constraining it to lie on the signal.

Amplitude values obtained in this manner are susceptible to noise on the signal.

If there is a large amount of noise at the current knot time being analyzed by CCM,

it will result in a spurious relevance value to the optimization algorithm. This will

in turn cause an erroneous figure of merit value and adversely impact knot location.
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(a) Local optimum for Sf with existing

implementation, showing the best linear

estimate that can be obtained between

the two constraining knots.
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(b) The square marker indicates an Sf

location explored by CCM, with poor

likelihood.
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(c) Another potential Sf explored by

CCM, with lower likelihood than (b).

Figure 5.1: An example of CCM finding a local optimum. The QRS complex of Figure 4.22 with

markers indicating the R′ peak (R′

p), S wave offset (Sf ), and T wave onset (To). When evaluated

by CCM, the locations indicated by square markers in (b) and (c) had a large error in their linear

estimate of the signal resulting in a poor likelihood and low figure of merit. The center knot

location shown in (a) is the locally optimal one for Sf , but is not at the desired location.
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(a) The square markers indicate loca-

tions explored for R′

p and Sf by CCM,

with poor likelihood.
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p and

Sf by CCM, with poor likelihood.
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(c) CCM has identified the locations of

R′

p and Sf with greatest likelihood.

Figure 5.2: Finding the global optimum by searching two coordinate axes simultaneously. This

improvement to the CCM optimization algorithm would search two coordinate axes simulta-

neously, exploring all possible locations for R′

p and Sf (square markers) between Sp and To.

Locations in (a) and (b) have large error in their linear estimate of the signal resulting in a

poor figure of merit. The center knots in (c) have the best likelihood, are globally optimal, and

correspond to the desired locations for R′

p and Sf .
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The proposed improvement complements the existing two-dimensional proba-

bility density estimate explicitly with knot amplitudes, resulting in a joint time-

amplitude-relevance prior. As before, the time dimension is the offset of the knot

from the R wave peak, and the relevance dimension captures the curvature at the

current point by incorporating the relative times and amplitudes of the three-tuple

of knots. With this enhancement, these values are augmented with the amplitude

of the knot expressed relative to the R wave peak.

There is a significant increase in computational cost, however, as the optimiza-

tion algorithm now needs to consider different amplitudes as well as times because

the knot under optimization is no longer constrained to lie on the signal. CCM

must therefore search a two-dimensional region around a knot’s location, and for

each of these candidate locations use its time, amplitude, and relevance values to

obtain the prior and compute the figure of merit.

Explicitly factoring amplitude priors into the optimization will give the algo-

rithm a greater ability to deal with noise, as it will have a more complete repre-

sentation of prior knowledge for the characteristic points. In addition to increased

computation cost during optimization, more training data will also be required

as a result of the increased dimensionality of the joint probability density to be

estimated.

5.3.3 Algorithm characterization via synthesized waveforms

Using simulated waveforms in a test platform allows for a systematic, quantitative

characterization of numerous aspects of the algorithm. Such a characterization

could provide a more detailed understanding of the impact of priors than previously

reported, and can determine the effect of precisely-controlled noise levels, of various

types, on the algorithm’s accuracy in estimating characteristic points.

Although the impact of priors is explored and reported in Sections 4.9 and 4.10,

a future effort could increase the depth and breadth of that work. Specifically,
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synthetic waveforms could be generated using knots drawn from distributions de-

scribed by a given set of priors, and the algorithm’s performance evaluated. To

assess the impact of differences between the priors and actual distributions, subse-

quent runs could iteratively modify the distributions used to synthesize the wave-

forms to increasingly vary from the priors.

This effort would provide a objective indicator of characteristic point location

accuracy as a function of the distance between the prior densities used in opti-

mization and the densities used to simulate the test waveforms. The results of this

investigation are important to understand how the algorithm behaves if a subject’s

morphology changes during monitoring, as might be the case for a degenerative

disease state, i.e., a healthy subjects develops indications of a cardiac condition

while being monitored.

Another effort using simulated data could add calibrated amounts of bandlim-

ited noise to signals under analysis, and compare algorithm’s accuracy in estimating

characteristic point locations with, and without, use of the priors. The intent of

this exercise is to quantify the impact of priors in noisy settings.

There is a challenge in synthesizing waveforms in this manner, however. Draw-

ing characteristic point locations from the priors used to initialize knot locations,

as described in Section 4.4.1, is not sufficient for accurate signal synthesis.

Fundamentally, the problem arises from the fact that location priors do not

preserve much of the information required to synthesize meaningful waveforms,

and simulating waveforms using solely these priors often results in unrealistic mor-

phologies. Even though drawn from valid distributions describing each point, the

combination of times and amplitudes obtained in this manner often results in

invalid curvatures. For example, due to the variances of characteristic point am-

plitudes, shown Figure 4.8, it is possible for a waveform peak to be less than its

corresponding onset and offset value. Or the peak can be higher than the onset,

but lower than the offset.
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To synthesize a valid waveform represented by the underlying priors, the sim-

ulation must incorporate relative times and amplitudes of neighboring knots so

that location has a proper curvature. Ideally, the curvatures should be drawn from

the time-relevance joint density estimates obtained by KDE as described in Sec-

tion 4.4.4. This can be achieved using a Monte Carlo algorithm, such as Gibbs

sampling, to obtain samples corresponding to the desired distributions.

5.3.4 Nonparametric probability density estimate for likelihood

As described in Section 4.5, the likelihood p(y|k) is a value reflecting how well

the model, a linear interpolant defined by the current value of its parameters,

the knots, represents an observed signal. In the effort described in Chapter 4

the error values defining the likelihood are modeled as being distributed normally

with zero mean and an experimentally determined variance. Likelihood values are

drawn from such a distribution for error values corresponding to each point of the

interpolated estimate.

The assumption of normality, although convenient, may not be an accurate one.

Future research should determine if better results are obtained by using likelihood

values drawn from probability density estimates determined completely from the

data. Such density estimates could better represent the physical reality of the

errors and provide increased estimation accuracy.

This approach can be implemented by performing a kernel density estimation of

the error values obtained for each manually specified knot location in the training

set. It is completely analogous to the KDE approach used to determine the prob-

ability density estimates of the time-relevance priors used by the figure of merit

for optimization, as described in Section 4.4.4. In this case, however, the KDE

need only estimate a one-dimensional probability density: that corresponding to

the errors in the interpolated estimate for each knot.
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Using the notation of Section 4.5, the KDE is performed on error values calcu-

lated as the difference between the observed signal and its interpolated estimate

for each manually specified knot. These are represented as ǫj = yj − ŷj, with

1 < j < m, where m is the number of samples spanned by the three-tuple of knots,

the center knot of which is being optimized.

During the optimization process, the figure of merit calculation obtains a like-

lihood by looking up the KDE value of the error in the interpolated estimated at

the current knot location.

5.3.5 Explore the bias-variance tradeoff

Section 4.4.4 describes the development of the time-relevance priors from manual

annotations of the training set. The resulting estimates of the joint probability

densities are illustrated in Appendix A, and are used to provide the a priori prob-

abilities for calculating figure of merit during optimization.

The granularity of the histograms, and the bandwidth used in calculating the

KDE, determine the tradeoff between bias and variance in these non-parametric

estimators. Increasing the bandwidth of the KDE will further smooth the estimate

and decrease its variance at the expense of increased bias. Decreasing its bandwidth

will reduce the estimator’s bias, but increase its variance. The KDEs shown in

Appendix A served reasonably well on the test set, but many exhibit very small

localized maxima outside of the main modes, indicating potential undersmoothing.

A systematic analysis of the bias-variance tradeoff of these estimates would

be beneficial and provide objective evidence regarding the degree of smoothing

required for minimum error (both bias and variance) in the characteristic point

estimates.
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5.3.6 Expand support for other morphologies

There are a variety of morphologies not present in the training and test data used

for this effort. Depending on the application of the framework, the subjects to

be evaluated, and their health state, there may be need to incorporate priors sup-

porting other ECG morphologies including negative or asymmetric P and T waves,

notched T waves, and U waves.

The framework can readily be extended to support such morphological features.

In the case of biphasic T waves, for example, it would be necessary to add an

additional T peak knot in C intended to capture the second peak, and then re-derive

priors from a training set which includes biphasic T waves. A similar approach

could be adopted to identify U wave onset, peak and offset.

The implementation already supports biphasic RS complexes as long as there

is a detectable R wave to allow relative knot representations as described in Equa-

tion (4.3). The implementation cannot represent inverted QS complexes which

lack an R wave because the priors are calculated relative to the R wave peak. An

implementation using a different fiducial point which does not rely on the R wave

could address this limitation and allow more general complexes to be modeled.

5.3.7 Improving the priors

Using prior density estimates computed on a per-subject basis can improve algo-

rithm performance in the presence of noise. When computed using data from only

one individual, the prior probability estimates will have less variance since they

are calculated using data exhibiting a much more limited set of morphologies.

As a result of this decreased variance they will have correspondingly more

power over the likelihood term in the figure of merit, i.e., the modes of the joint

time-relevance density estimates shown in Appendix A will be sharper and result

in greater differences in the priors for smaller changes in the time and relevance
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values. However, implementing per-subject priors will cause them to be biased to

the individual used for training, and as such they will almost certainly not work

as well for other subjects.

5.3.8 Additional support knot

For some T wave morphologies an additional support knot will help produce more

consistent and accurate estimation of the T wave offset characteristic point. There

are several subjects in the training and test sets that could benefit from this im-

provement.

Specifically, for cases exhibiting a very steep offset wave, the existing support

knot T2 is insufficient. Much like the description provided for the QRS complex in

Section 4.2.2, the downward waveform from the T wave peak can be sigmoidally

shaped. Positioning the support knot at the midpoint of the peak and offset does

help, but it is not enough to capture the curvature of the sigmoid.

As a result the error in the linear estimate adversely impacts the likelihood

term, and causes the knot to be placed to the left of the desired location. An

additional support knot on the downward slope of the T wave will allow the linear

interpolant to represent the signal more accurately, preventing this problem.

5.3.9 Use of relevance following optimization

In the current implementation, relevance values are computed on the manually-

annotated characteristic points in the training set to allow estimation of the a

priori probability density. During optimization, they are calculated on knots only

to determine the value of the time-relevance prior at the knot location under con-

sideration as part of the figure of merit calculation.

After optimization is completed, the algorithm can determine presence or ab-

sence of characteristic points that may be lacking for a given ECG signal (such as
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the peaks of the Q, S, and R′ waves and onset of the T wave) by using the rele-

vance value of the corresponding optimized knot. A comparison of the relevance

value against the bimodal density for these characteristic points allows automatic

determination of presence of absence of these knots.
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Appendix A

CHARACTERISTIC POINT PRIORS

This appendix includes figures of the histograms and kernel density estimates

(KDE) used to model the joint time-relevance probability densities of all the char-

acteristic points in the set C. The histograms and KDEs were obtained from

manual annotations on the training data as described in Section 4.4.4. In all fig-

ures, t is the time of the characteristic point in seconds expressed relative to the

R wave peak, and ρ is its relevance as defined by Equation 4.9.

C = {Po, Pp, Pf , Qo, Qp, Sp, R
′

p, Sf , To, Tp, Tf}

Po — onset of the P wave as the signal increases from its isoelectric level.

Pp — the peak value of the P wave.

Pf — offset of the P wave as the signal returns to its isoelectric level.

Qo — onset of the QRS complex.

Qp — the negative peak of the Q wave, which is not always present.

Sp — the negative peak of the S wave, which is not always present.

R′

p — the typically small peak of the R′ wave, which is not always present.

To — onset of the T wave, which is often not discernible.

Tp — the peak value of the T wave.

Tf — offset of the T wave as the signal returns to its isoelectric level.
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(a) Po histogram.
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Figure A.1: Histogram and KDE estimating the joint time-relevance prior probability density of

the P wave onset characteristic point Po.
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(a) Pp histogram.

−0.20
−0.15

−0.10

−0.73
−0.01

 0.72

t
ρ
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Figure A.2: Histogram and KDE estimating the joint time-relevance prior probability density of

the P wave peak characteristic point Pp.
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(a) Pf histogram.
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Figure A.3: Histogram and KDE estimating the joint time-relevance prior probability density of

the P wave offset characteristic point Pf .
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(a) Qo histogram.
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(b) Qo KDE.

Figure A.4: Histogram and KDE estimating the joint time-relevance prior probability density of

the Q wave onset characteristic point Qo. The mode in the density estimates at ρ ≈ 0.6 results

from signals with a Q wave peak Qp, and indicates a moderate downward curvature of the signal

from its isoelectric level toward the negative peak. The mode at ρ ≈ −0.3 results from signals

without Qp, and indicates a mild upward curvature at QRS onset toward the R wave peak.
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(a) Qp histogram.
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Figure A.5: Histogram and KDE estimating the joint time-relevance prior probability density of

the Q wave peak characteristic point Qp. These estimates are bimodal, reflecting beats in the

training data with, and without, the Q wave peak. The mode at ρ ≈ −0.9 indicates a very sharp

concave up waveform corresponding to presence of Qp. The mode at ρ ≈ 0.05 corresponds to

complexes in the training set that did not have a Q wave peak, and for which the corresponding

knot was on the linear part of the ascending QR segment.
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(a) Sp histogram.
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Figure A.6: Histogram and KDE estimating the joint time-relevance prior probability density of

the S wave peak characteristic point Sp. Although it is not uncommon for ECG waveforms to

be missing an S wave peak, virtually all of the training data used in this effort exhibited Sp. As

a result its density estimate is not bimodal like those of Qp and R′

p.



www.manaraa.com

177

−0.71
 0.01

 0.73

 0.02

 0.05

 0.07

t
ρ
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p histogram.
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Figure A.7: Histogram and KDE estimating the joint time-relevance prior probability density

of the R′ wave peak characteristic point R′

p. The R′ wave may be missing in some waveforms

of the training data set, resulting in a bimodal density. The mode at ρ ≈ 0.8 indicates a sharp

concave down peak corresponding to the presence of the positive R′ peak. The mode at ρ ≈ 0.01

reflects complexes in the training set without this feature, and for which the corresponding knot

was on the linear part of the waveform.
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(a) Sf histogram.
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Figure A.8: Histogram and KDE estimating the joint time-relevance prior probability density of

the QRS offset characteristic point Sf . The mode in the density estimates at ρ ≈ −0.6 indicates

a moderate curvature down to the isoelectric level from the R′ peak when it is present, or from

the R peak (when the signal is lacking both S and R′ peaks). The mode at ρ ≈ 0.4 indicates a

mild curvature to the isoelectric level from the negative S wave peak. It results from waveforms

exhibiting the S wave but lacking an R′ wave.
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Figure A.9: Histogram and KDE estimating the joint time-relevance prior probability density of

the T wave onset characteristic point To. The T wave onset does not exist for many waveforms

in the training set, leading to an expectation of a bimodal density with modes reflecting presence

and absence of this characteristic point. However, the bin width and bandwidth parameters used

for the histogram and KDE, respectively, preclude discrimination of very low relevance values

associated when the onset exists from the near-zero relevance value when it does not. As a result,

the estimate is unimodal.
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(a) Tp histogram.
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Figure A.10: Histogram and KDE estimating the joint time-relevance prior probability density

of the T wave peak characteristic point Tp.
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(a) Tf histogram.
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Figure A.11: Histogram and KDE estimating the joint time-relevance prior probability density

of the T wave offset characteristic point Tf .
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Appendix B

DATA

The data used in this effort comprised lead II ECG signals from 176 healthy 20–

45 year-olds as reported in [90]. The signals were captured during a precisely-

controlled psychophysiology protocol which included physical, mental, and emo-

tional stressors. The mental stressors were arithmetic and Stroop color-word tests,

the emotional stressors comprised preparation for and presentation of a short

speech, and the physical stressor was a 70◦ head-up tilt.

Data for each subject includes approximately one hour of ECG signal, between

two and five minutes captured during each phase of the stressor protocol, including

baseline and recovery periods. Baseline periods were intended to establish indi-

viduals’ behavior in periods without active stressors and recovery periods were to

allow time for recovery between stressors. The ECG signal was sampled at 500 Hz

and digitized with a resolution of 16 bits.

The training set was constructed by first randomly selecting 40 of the 176

subjects. The the ecgpuwave QRS detector [25] was run on their full ECG signals

to locate beats and establish the precise location of their R wave peaks. This

detector was chosen as it is well-established in the literature, and in addition to

detecting the R wave also provides onset, peak, and offset locations for the P and

T waves. Its estimation of characteristic points for the P and T waves, however,

was not as accurate as the manual annotations, so this functionality of the detector

was not used.

After running the QRS detector, ten beats were extracted from each of the

40 subjects’ data by selecting one beat randomly from each of the ten phases of
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the protocol, resulting in a training set comprising 400 beats. The beat extrac-

tion algorithm employed a commonly used, simple means to determine the wave-

form boundaries between successive beats: the midpoint in time between adjacent

R wave peaks. So the start and end points for extracting a beat were set to one-half

the beat-to-beat interval to the preceding and following beats, respectively.

The first set of 200 beats of the training set was manually annotated by one

reviewer, and the second set of 200 beats was manually annotated by two review-

ers. In total this provides up to 600 potential manual annotations of points in C,

although due to noise, ambiguity, and missing features in the training data there

are fewer than 600 annotations for all points. These were normalized to the R

wave location and amplitude as defined by Equation (4.3). The location priors

and time-relevance priors were computed from the locations of these manually-

specified characteristic points as described in Section 4.4.

To prospectively evaluate the algorithm performance another 20 subjects were

randomly selected, explicitly different than those chosen for the training set. As

with the training data, a single beat was extracted at random from each of the 10

phases of these 20 subjects’ data to provide a total of 200 beats. All 200 beats

in the test set were manually annotated by two reviewers, resulting in 400 sets of

manual annotations of points in C. Algorithm assessment was based on differences

in knot locations determined by the algorithm and the two full sets of independent

manual annotations, as described in Section 4.8.


